

Lion Beer, Spirits & Wine Pty Ltd Project 71021.20

L 7 68 York St 24 June 2024

Sydney NSW 2000 R.001.Rev0

KDP:jl

Attention: Jason Lee

Email: Jason.lee@lionco.com

Report on Groundwater Monitoring May 2024 Tooheys, 29 Nyrang Street, Lidcombe NSW

1. Introduction

This letter report by Douglas Partners Pty Ltd (Douglas) provides the laboratory results and a brief discussion of the May 2024 round of Groundwater Monitoring at the Tooheys Brewery Site at 29 Nyrang Street, Lidcombe. The groundwater monitoring was undertaken in accordance with Douglas proposal 71021.20.P.001 dated 8 April 2024.

The objectives of the groundwater monitoring programme are to assess whether any groundwater contamination identified on site in 2006 is migrating off site and to address the conditions of approval for groundwater monitoring set by the NSW Department of Planning as part of the approval for the upgrade and continued operation of the site under Part 3A of the Environmental Planning and Assessment Act 1979. It is understood that no further rounds of monitoring were required as of 2014. However, Tooheys has requested continued monitoring until such time as their licencing conditions are changed. The ongoing monitoring frequency is therefore biannual with rounds completed in May and November of each year, as instructed by the client.

As stated in Douglas' report First Round of 2011 Groundwater Monitoring, Tooheys Brewery – 29 Nyrang Street, Lidcombe, 7 June 2011, ref: 71021.03, a Phase 1 contamination assessment was conducted by DP in 2006. The results of the soil sampling and analysis conducted by Douglas in November and December 2006 indicated elevated total recoverable hydrocarbon (TRH) concentrations in samples collected from boreholes adjacent to the fuel underground storage tanks (USTs) for the former boiler (the former boiler USTs). Elevated TRH and toluene concentrations were detected in groundwater samples collected from the well adjacent to the groundwater samples collected from the well adjacent to the refuelling USTs (BH1).

Four additional groundwater wells were installed at the boundary of the site in order to determine whether the identified contamination was migrating off-site (DP report on Field Investigation Phase 1 Contamination Assessment, 29 Nyrang Street, Lidcombe, March 2007, ref: 44359). Further rounds of groundwater monitoring have been undertaken by DP as listed in Section 8.

2. Site information

The brewery is located at 29 Nyrang Street, Lidcombe, within the Local Government Area of Cumberland City Council and comprises a roughly rectangular area of approximately 6.2 hectares (ha). The site is contained within Lot 110, DP 1141813. It is Zoned 4(a) Industrial Enterprise and is surrounded by industrial sites to the north, west and south and a residential area to the east.

Haslams Creek is located to the immediate west of the site and flows in approximately a northerly direction. To the north of the site the creek bends to the east and flows to the northeast and discharges into Homebush Bay located approximately 3.5 km downstream from the brewery. The portion of Haslams Creek adjacent to the brewery is a concrete lined stormwater channel.

The site is used for the production and storage of Tooheys' beer, which is transported and distributed by trucks to various outlets. The majority of the site is occupied by large warehouse structures and large fermentation, maturation and storage tanks/silos. A site drawing and borehole location plan are presented in Drawing 1, attached.

Six decommissioned USTs were located along the northern boundary of the utility building. The USTs are reported to have been emptied in the late 1990s when the boilers were converted to natural gas. It was reported by ARUP that in September 2008, Tooheys decommissioned the six former boiler USTs in situ, which involved removal of the residual water / fuel mix inside the tanks and foam filling.

A further three USTs were located on the north-eastern boundary of the site which were formerly used for the storage of petrol or diesel for on-site vehicle refuelling. A concrete plinth and awning structure indicated that a bowser was also located nearby. Monitoring Wells BH1 and BH2 are located to the east and west of the UST and petrol bowser respectively. It was reported that the former refuelling USTs were decommissioned in situ by being sand filled and capped in the 1990s.

DP prepared a remediation action plan (RAP) for the removal and validation of the above three USTs on the north-east boundary. The RAP was entitled Remediation Action Plan, 29 Nyrang Street, Lidcombe, October 2011, ref 71021.02 Revision 2. The subsequent remediation and validation for the underground petroleum storage system (UPSS) in this area was undertaken shortly after the completion of the second round of groundwater monitoring carried out on 21 October 2011. The procedure and results of the remediation and validation of the UPSS at the north-eastern boundary area were reported in, UPSS Validation Assessment, Tooheys Brewery, 29 Nyrang Street, Lidcombe, project reference 71021.04, dated February 2012. The successful validation was subject to a Site Audit undertaken by ENVIRON Australia Pty Ltd.

3. Groundwater default guideline values

Groundwater default guideline values (DGV) have been sourced from the ANZG Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018) default guideline values for toxicants in fresh waters for the protection of 95% of species. It is noted that the groundwater investigation levels (GIL) for groundwater monitoring rounds prior to the August 2018 were sourced from the ANZECC Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000), trigger values for toxicants in fresh waters for the protection of 95% of species.

It is also noted that as of 29 August 2018, the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018) revoked the documents listed below:

- The Australian Water Quality Guidelines for Fresh and Marine Waters (ANZECC, November 1992); and
- The Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC and ARMCANZ, October 2000).

Previously, in the absence of ANZECC (2000) criteria for TRH, the laboratory limits of reporting were adopted as the screening criteria as nominated for the auditor-approved RAP. In order to be consistent with the adopted modified values and with the EPL, the laboratory limits of reporting for TRH have continued to be used as screening levels. Furthermore, the purpose of the assessment is to assess the potential off-site migration of contaminants associated with the fuel tanks, not to assess potential vapour intrusion risks within the site. It is noted also that the DGV values for TRH are more stringent than those adopted in earlier groundwater monitoring rounds (pre-November 2011). Therefore, the laboratory limits of reporting are considered to be suitable as initial screening levels for TRH.

Table 1: Groundwater default guideline values (DGV) and rationale

Contaminant	Adopted criteria (µg/L)	Contaminant
Metals Arsenic (V) Cadmium Chromium (III) Copper Lead Mercury Nickel Zinc	13.0 2.4* (0.2) 33.1* (3.3) 1.4 121.1* (3.4) 0.6 120.2* (11) 87.4 (8)	ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality for the protection of 95% of freshwater species. The threshold levels have been adjusted for extremely hard water (500 mg CaCO3 /L) in accordance with the guidelines which uses the algorithm
TRH C6 – C9	10	available in ANZECC (2000). Screening DGV (at limit of reporting) - require further
>C9 >C10 – C16	250 50	considerations if exceeded.

Contaminant	Adopted criteria (µg/L)	Contaminant
		ANZG (2018) Australian Water Quality Guidelines for the protection of 95% of freshwater
BTEX		species.
Benzene	950	
Toluene	180	Reliability of DGV for toluene and
Ethylbenzene	80	ethylbenzene is unknown.
Xylene	625	
		DGV for xylene is the sum of m- xylene, o-xylene and p-xylene default guideline values.

^{*} Hardness modified trigger value (default trigger level)

4. Groundwater monitoring methodology and field observations

4.1 Identification of wells

The locations of the six existing wells labelled BH1, BH2, BH7, BH8, BH9 and BH10 along the western and northern boundaries of the site are presented in Drawing 1, attached.

4.2 Frequency of sampling

The groundwater monitoring wells BH1, BH2, BH7, BH8, BH9 and BH10 are monitored on a biannual basis in May and November each year, until such time as the requirement for monitoring is terminated, in accordance with the environmental protection licence (EPL) pursuant to the site.

4.3 Well development

Prior to collecting groundwater samples, each well was fully developed on 23 May 2024 using a submersible 12V pump in order to remove stagnant water and to provide good hydraulic connectivity to the local groundwater system. The exception was monitoring well BH7 that was developed with a peristaltic pump as the submersible 12V pump was unable to be lowered beyond a bend in the pipe.

Well development was achieved by the removal of a minimum of three well volumes of water or until the well was dry, whichever was the lesser. Monitoring wells BH7, BH9 and BH10 became dry during development. All wells were left to equilibrate prior to sampling.

4.4 Collection of groundwater samples

The collection of groundwater samples from each of the six monitoring wells was carried out in accordance with the methodology as set out in the Douglas Field Procedures Manual. Groundwater sampling was undertaken on 24 May 2024 by a Douglas Environmental Engineer using a low flow peristaltic pump. Samples were taken from near the middle of the screened section, being close to the middle of the water column. The sampling programme included 10% field replicates for QA / QC purposes. The replicate sample was identified as BD1/20240524 was

also collected on 24 May 2024 from BHI. A trip spike and blank were also taken to site and a rinsate sample collected.

The samples were collected after stable field readings were obtained for pH, conductivity, temperature and dissolved oxygen. Samples were carefully pumped into laboratory prepared sample containers including hydrochloric acid preserved BTEX vials. The groundwater samples collected for heavy metal testing were filtered in the field using a 45 μ m filter. Completed field sheets are attached to this report.

No phase separated hydrocarbons (PSH) were noted in the groundwater collected from any of the wells sampled in this monitoring round.

Sample containers were labelled and stored in the field and transported in an esky cooled with ice and later stored in a fridge at the office or laboratory. The samples were delivered to a NATA accredited laboratory, Envirolab Services (ELS), together with chain-of-custody records.

4.5 Quality assurance and quality control (QA / QC)

QA/QC sampling and analysis included the analysis of one replicate sample and one trip blank and trip spike and rinsate sample.

An intra-laboratory replicate analysis was conducted as a check of the reproducibility of results and as a measure of consistency of sampling techniques.

The comparative results of analysis between original and intra-laboratory replicate sample are summarised in Table 2.

Table 2: RPD results - intra-laboratory results (µg/L)

Analyte	вні	BD1/20240524	Difference	RPD (%)
As	<1	<1	0	0
Cd	<0.1	<0.1	0	0
Cr	<1	<1	0	0
Cu	<1	3	2	100
Pb	<1	<1	0	0
Hg	<0.05	<0.05	0	0
Ni	3	3	0	0
Zn	33	31	2	6
C6-C9	<10	<10	0	0
C10-C36	<50	<50	0	0
>C10-C16	<50	<50	0	0
Benzene	<7	<7	0	0
Toluene	<7	<7	0	0

Analyte	вні	BD1/20240524	Difference	RPD (%)	
Ethyl-Benzene	<7	<1	0	0	
Total Xylene	<3	<3	0	0	

The calculated RPDs were all within the acceptable range of +/- 30 for inorganic analytes and +/- 50% for organics with the exception of copper. The exceedance was not considered significant due to the low overall concentrations detected. Therefore, the intra-laboratory replicate comparison indicates that the sampling technique was generally consistent and repeatable, and the laboratory sampling handling and analytical methods are comparable.

A trip spike and trip blank were also analysed. The trip spike recovery for BTEX was between 87% and 98% and the trip blank results for BTEX were below the laboratory level of reporting indicating that appropriate transport and handling techniques were adopted.

A rinsate sample was collected and analysed for metals, TRH and BTEX. The concentrations of the analytes in the rinsate sample were below the laboratory detection limits indicating that adequate decontamination techniques had been employed.

4.6 Laboratory results

The groundwater samples (including QA / QC samples) were sent for the following analysis at a NATA accredited laboratory:

- Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); and
- TRH and BTEX.

Table 3 shows the analytical scheme for the groundwater samples.

Table 3: Analytical scheme for groundwater samples

Sample ID	Heavy Metals	TRH	BTEX
BH1, 2, 7, 8, 9, 10	X	X	X
BD1/20240524*	X	X	X
Trip Spike			X
Trip Blank			X
Rinsate	X	Х	Х

^{*} Blind duplicate sample of BH1

5. Results

5.1 Field results

Piezometric levels were measured prior to development and prior to sampling from the groundwater wells. The measured levels are summarised in Table 4. It is noted that groundwater levels are transient and change over time due to climatic, anthropogenic and other influences.

Table 4: Piezometric levels

		Date					
Monitoring Well	m AHD (surface)	23/05/24 (develo	opment)	24/05/24 (sampling)			
	m bgl m AHD		m bgl	m AHD			
1	6.46	2.15	4.31	2.35	4.11		
2	6.25	2.51	3.74	2.35	3.9		
7	6.38	2.68	3.7	3.24	3.14		
8	6.50	4.23	2.27	4.25	2.25		
9	6.00	4.02	1.98	4.02	1.98		
10*	5.12	1.14	3.98	3.87	1.25		

The water level appeared to have recovered to the equilibrium level or close to the equilibrium level after development in each of the wells.

Groundwater samples were noted to be mostly clear or slightly turbid. Samples were taken after stable readings were obtained for temperature, dissolved oxygen, conductivity, pH, and reduction potential as presented in Table 5.

Table 5: Groundwater reading upon stablisation

Monitoring Well	Temperature (°C)	Dissolved Oxygen mg/L	Conductivity (µS/cm)	рН	Redox (mV)
1	21.6	1.04	2872	5.95	-98.8
2	21.8	4.40	9592	6.10	-67.9
7	20.5	0.39	853	4.94	-80.3
8	21.4	0.80	19336	5.65	-115.1
9	21.7	3.67	10495	6.08	-80.5
10	20.0	4.93	5184	6.43	-92.6

5.2 Analytical results

The attached Tables 6 to 24 provide the results of previous groundwater testing for reference purposes. The laboratory results of the current groundwater samples plus the QA/QC results are summarised in the attached Table 25. The laboratory test results certificates and chain-of-custody information for the current round of monitoring are also attached.

6. Discussion

Concentrations of TRH and BTEX were reported below the laboratory limits of reporting for all monitoring wells sampled during this round.

TRH has periodically been detected in BH10 and on two occasions in BH1 during the previous rounds of monitoring. Surface water impacts have been recorded at these locations due to localised minor flooding of the locations where the wells are positioned. Historically the TRH detections at these locations have not been persistent and have not been indicative of petroleum spills / leaks. Test locations BH1 and BH10 are located at the northern site boundary in a position that is hydraulically upgradient of the potential on-site source/s of petroleum hydrocarbons. The concentration of TRH in the three groundwater wells along Haslams Creek (the down-gradient site boundary, BH7, 8 and 9) were all below the laboratory detection limit which indicates that there is not a significant risk of off-site migration of petroleum hydrocarbons. During the current round the concentration of TRH was also below the laboratory reporting limit.

Therefore, at this stage the periodic TRH detections are not considered to be significant and do not warrant further action.

Concentrations of heavy metals were reported either below their respective laboratory limits of reporting or below the DGV for all monitoring wells sampled during this round of sampling with the exception of copper in replicate sample BD1/20240524 (3 μ g/L compared to the DGV of 1.4 μ g/L). However, the concentration of copper in the primary sample (BH1) was <1 μ g/L. Therefore, the minor exceedance was not considered to be environmentally significant.

Low levels of heavy metals, in particular copper have periodically been detected in groundwater particularly copper and zinc however no significant trends have been identified. Mann Kendall Trend analysis was undertaken for heavy metals and TRH which confirmed that there is no evidence of significant trend increases in heavy metal or TRH levels in groundwater at the site to date.

Elevated heavy metals within the detected ranges are also typical of diffuse urban pollution and generally cannot be attributed to any specific on or off-site source.

7. Conclusion

Based on the current round of groundwater monitoring at the site, the laboratory results indicate that the groundwater is not significantly impacted by petroleum hydrocarbon or heavy metal contamination at the monitored locations.

8. List of previous reports

The previous groundwater reports are listed below:

- Groundwater Monitoring Report, 29 Nyrang Street, Lidcombe, January 2010, ref: 71021.00;
- Groundwater Monitoring Report, 29 Nyrang Street, Lidcombe, January 2011 ref: 71021.01;
- First Round of Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, June 2011 ref: 71021.03;
- Second Round of Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, November 2011 ref: 71021.03;
- First Round of Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, June 2012 ref: 71021.06;
- Second Round of Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, October 2012 ref: 71021.06;
- First Round of Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, May 2013 ref: 71021.07;
- Second Round of Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, November 2013 ref: 71021.07;
- 2014 Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, July 2014 ref: 71021.08;
- 2015 Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, December 2015 ref: 71021.10;
- January 2016 Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, February 2016 ref: 71021.10;
- January / February 2017 Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, 6 March 2017 ref: 71021.11.R.001.Rev0;
- March 2017 Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, 13 April 2017 ref: 71021.11.R.002.Rev;
- August 2017 Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, 15 September 2017 ref: 71021.12.R001.Rev0;
- November 2017 Groundwater Monitoring, Tooheys Brewery 29 Nyrang Street, Lidcombe, 1 December 2017 ref: 71021.12.R.002.Rev0;
- August 2018 Groundwater Monitoring Tooheys Brewery 29 Nyrang Street, Lidcombe, 12 September 2018 ref: 71021.13.R.001.Rev0;
- Groundwater Monitoring November 2018, 29 Nyrang Street, Lidcombe, 12 December 2018 ref: 71021.13.R.002.Rev0;
- August / September 2019 Groundwater Monitoring Round, 29 Nyrang Street, Lidcombe, 1 November 2019 ref: 71021.14.R.001.Rev0;
- November 2019 Groundwater Monitoring, Tooheys Brewery 29 Nyrang Street, Lidcombe, 11 December 2019 ref: 71021.14.R.002.Rev0;
- May 2020 Groundwater Monitoring, Tooheys Brewery 29 Nyrang Street, Lidcombe, 3 June 2020 ref: 71021.15.R.001.Rev0;

- November 2020 Groundwater Monitoring, Tooheys Brewery 29 Nyrang Street, Lidcombe, November 2020 ref: 71021.15.R.002.Rev0;
- May 2021 Groundwater Monitoring, Tooheys Brewery 29 Nyrang Street, Lidcombe, May 2021 ref: 71021.16.R.001.Rev0; and
- November 2021 Groundwater Monitoring, Tooheys Brewery 29 Nyrang Street, Lidcombe, November 2021 ref: 71021.16.R.002.Rev0.
- May 2022 Groundwater Monitoring, Tooheys Brewery 29 Nyrang Street, Lidcombe, November 2021 ref: 71021.18.R.001.Rev0.
- May 2022 Groundwater Monitoring, Tooheys Brewery 29 Nyrang Street, Lidcombe, November 2021 ref: 71021.18.R.001.Rev0.
- December 2022 Groundwater Monitoring, Tooheys Brewery 29 Nyrang Street, Lidcombe, February 2022 ref: 71021.18.R.002.Rev0.
- May 2023 Groundwater Monitoring, Tooheys Brewery 29 Nyrang Street, Lidcombe, June 2023 ref: 71021.19.R.001.Rev0.
- November 2024 Groundwater Monitoring, Tooheys Brewery 29 Nyrang Street, Lidcombe, December 2024 ref: 71021.19.R.002.Rev0

9. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for this project at 29 Nyrang Street, Lidcombe in accordance with DP's proposal (71028.20.P.001.rev0) dated 8 April 2024 and acceptance received from Mr Jason Lee of Lion-Beer, Spirits and Wine Pty Ltd. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Lion-Beer, Spirits and Wine Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and / or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and / or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the groundwater components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Please contact the undersigned if you have any questions on this matter. Yours faithfully

Douglas Partners Pty Ltd

PΡ

J. M Nash Principal

Reviewed by

Kurt Plambeck Senior Associate

Attachments:

About this Report

Drawing 1
Field Notes
Results Tables

Laboratory Certificates

Mann-Kendall Trend Analysis

Attachments

About this report

Drawing 1

Field Records

Results Tables – Table 6 to Table 24

Laboratory Certificates

Mann-Kendall Trend Analysis

About this Report

November 2023

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

- In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at

- the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

continued next page

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

intentionally blank

intentionally blank

de Bourdas

CLIENT: Lion-Beer Wine and Spirits

OFFICE: Sydney

DRAWN BY: KDP

SCALE: 1:1500 @A3 DATE: 12.June.2024

Groundwater Well Locations
Groundwater Monitoring
19 Nyrang Street, Lidcombe NSW

PROJECT: 71645.20

DRAWING No: 1

REVISION: 0

Groundwater Field Sheet

Groundwater Field She						
Project and Bore Installation	Details					
Bore / Standpipe ID:	BH1					
Project Name:	TooheysNover	-has 2023 Mo	nitorina			
Project Number:		nder 2023 Mo	intornig			
Site Location:	71021.2	-t Lideambo				
Bore RL /	29 Nyrnag Stre	et, Liacombe				
Bore Easting:	6.5 m AHD		Al-dhi			
bore Easting:			Northing:			
Installation Date:	24-Oct-16					
GW Level (during drilling): Well Depth:		m bgl				
Screened Interval:	14.2	m bgl				
	2.0-14.2	m bgl				
Contaminants/Comments:						
Bore Development Details						
Date/Time:	23/05/24					
Purged By:	AL					
GW Level (pre-purge):	2.15	m bgl				
GW Level (post-purge):	2.26	m bgl				
PSH observed:	Yes / (Nd) (i	nterface/visua	I). ? mm thick			
Observed Well Depth:		m bgl				
Estimated Bore Volume:		L				
Total Volume Purged:	45	L				
Equipment:	12 Volt pump					
Micropurge and Sampling De						
Date/Time:	24/05/2	.4				
Sampled By:	ML					
Weather Conditions:	Sunny					
GW Level (pre-purge):	2.35	m bgl				
GW Level (post sample):		m bgl				
PSH observed:		nterface/visua	I). ? mm thick			
Observed Well Depth:	14.2	m bgl	7			
Estimated Bore Volume:	43	L				
Total Volume Purged:	5	L				
Equipment:	peristaltic pum					
			y Parameters			
Time / Volume	Temp (°C)	DO (mg/L)	EC (LS)or mS/cm)	pН	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
0	21.4	19.38	909	6.02		-65.7
30	21.6	4.24	919	6.13		- 7S. Z
60	21.6	2.78	938	6 16		-79.6
9.0	21.7	2.24	1385	6.10		-82 4
120	21.7	1.68	23.68	85.91		-85. 6
150	21.7	1.19	2846	5.91		- 85. 4
(30	21.6	1.04	7882	5.93		- 95.9
210	21.6	1.04	7 8 72	5. 9 5		- 98 -8
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:						
		Sample	e Details			
Sampling Depth (rationale):	8.2	m bgl,				
Sample Appearance (e.g.			.11	1		, 1
colour, siltiness, odour):	Light br	own, low	silt, no	odour or	sheen of	Served
Sample ID:	8 H'					
QA/QC Samples:	BD1/2024	0574				
Sampling Containers and	01110004	J 5 C 7				
filtration:	500mL glass,	2x 40mL glas	s vials (HCI), 1	x 100mL plast	ic (HNO3 (filter	red)
mtradon.						
Comments / Observations:						
5.1 - 17.7 1 2.22 1.00 5						
	-					

Douglas Partners Geotechnics | Environment | Groundwater

Project and Bore Installation	et Detaile					
	BH2					
	TooheysNovemb	hor 2023 Monit	oring			
	71021.2	Der 2023 Monit	Omig			
	29 Nyrnag Stree	t Lidcombe				
	6.2 m AHD	at, Eldcombc				
Bore Easting:		l N	lorthing:			
Installation Date:	20-Oct-16					
GW Level (during drilling):		m bgl				
Well Depth:	14.5	m bgl				
Screened Interval:	2.0-14.5	m bgl				
Contaminants/Comments:						
Bore Development Details						
Date/Time:	23/05/24					
Purged By:	ML					
GW Level (pre-purge):	7.51	m bgl				
GW Level (post-purge):		m bgl				
PSH observed:		nterface/visual)	. ? mm thick			
Observed Well Depth:		m bgl				
Estimated Bore Volume:		L				
Total Volume Purged:		L				
Equipment:	12 Volt pump					
Micropurge and Sampling De	etails					
Date/Time:	24 /05/24					
Sampled By:	Мι					
Weather Conditions:	Sunny					
GW Level (pre-purge):	2.35"	m bgl				
GW Level (post sample):	2.53	m bgl				
PSH observed:	Yes / (No) (ii	nterface/visua). ? mm thick			
Observed Well Depth:	14.2	m bgl				
Estimated Bore Volume:	44	L				
Total Volume Purged:	3	L				
Equipment:	peristaltic pum	p and TPS mi	ultimeter			
			Parameters	pH	Turbidity	Redox (mV)
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS) or mS/cm)	+/- 0.1	+/- 10%	+/- 10 mV
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	_	17-1070	-4-3.2
0	21.5	5.18	90 33	5.79		- 56 .4
30	21.8	5.03	9132	5.94		- 56 -4
60	21.8	4.83	9224	6.02		-63.
90	21 4	474	9 293	6.05	-	-64.1
· ·	21.8	4.68	9410	608		
(20	71.8	4.40	9592	6.10		-67.9
(\$0		THE STATE OF THE S			-	+
					1	
		48				
0						
	DO % Sat	SPC	TDS			
Additional Readings Following	00 % Sat	15.5				
stabilisation:		Samo	le Details	•		
			10 201411 9			
ampling Depth (rationale):	8.5	m bgl,				
Sampling Depart (redemancy)	Clear no	dine or	show ob	some		
ample Appearance (5.5.	Clear, No	and, or	JA-44 **	3.69.		
olour, siltiness, odour):	BH 2					
ample ID:	/					
A/QC Samples:	/					
	ı		ce viale (HCI)	1x 100mL pla	istic (HNO3 (f	iltered)
ampling Containers and	500ml dlass.	2x 40mL gla	55 VIAIS (1101)			
ampling Containers and	500mL glass,	2x 40mL gla	55 Viais (1101) 1			
ampling Containers and Itration: omments / Observations:	500mL glass,	2x 40mL gla	ss viais (1101) 1			·

Groundwater Field Sheet

roundwater Field She	et				,	
oject and Bore Installation	Details					
	BH7					
signt Name:						
alone Museub and	TooheysNovembe	er 2023 Monit	oring			
a Landle	71021.2					
ore RL	29 Nyrnag Street	Lidcombe				
ore Easting:	6.4 m AHD					
stellation Det		N	orthing:			
W Level (during drilling):	7-Dec-16					
ell Depth:		ı bgl				
creened Interval:	6.5 m	ı bgl				
ontaminants/Comments:	1.5-6.5 m	ı bgl				
ore Development Details D	No odows					
ore Development Details Boate/Time:	end in pipe - dev	elopment re	quires peristalti	c pump		
urged By:	2310 31 CT					
W Level (pre-purge):	ML					
W Level (pre-purge):	2,68 n	n bgl		7 u	se	
W Level (post-purge):	г	n bgl Dru.	No voter left	affer	development	rounds.
SH observed:	Yes / (No) (int	erface/visual)	? mm thick	arjet	Har Typ 14 and	
bserved Well Depth:	5.0	n bgl	· · · · · · · · · · · · · · · · · · ·			
stimated Bore Volume:	1					
otal Volume Purged:						
quipment:	12 Volt nump					
Micropurge and Sampling D	etails					
Date/Time:	24105/24					
Sampled By:	ML					
Weather Conditions:	Sunny					-
GW Level (pre-purge):		m bgl				
GW Level (post sample):	/ /	m bgl				
PSH observed:). ? mm thick			
Observed Well Depth:). ? mm thick			
Estimated Bore Volume:	S.0 6.5	m bgl				
Total Volume Purged:	3	L				
Equipment:	peristaltic pum	cond TDC m	dties et e e			
a disprisor.	pensianic puni		y Parameters			
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS) or mS/cm)			D-1(-10
Stabilisation Criteria (3 readings)				pH	Turbidity	Redox (mV)
O Treadings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
	20.6	10.17.	737	5.27		-60-7
30	20.5	7.17.	749	5. 28		-66.6 2
60	20.5	5.74.	760	5.23		- \$0.5
0	70.7	D.37	849	49		-93 D
30	20.6	0.37	851	4.97		-03 9
60	20.5	0.39	8 53	494		-88 3
	9					
Additional Readings Following	ng DO % Sat	SPC	TDS			
stabilisation:						
		Samp	le Details			
Sampling Depth (rationale):		m bgl,				
Sample Appearance (e.g.		1.1.1	1. 11 1	5300		
colour, siltiness, odour):	5 light t	urbidity,	light brown	, uo od	our orsho	· e.i
	BH7 - RE.	As per	sampling	contai		
Sample ID:	1	175 10.		-010790	ners beson	
QA/QC Samples:	-					
Sampling Containers and	500mL class	2x 40mL gla	ss vials (HCI) ,	1x 100mL nla	astic (HNO3 (file	ered)
filtration:	3.230		,		(, () () ()	S-60)
Comments / Observations:						

Douglas Partners Geotechnics | Environment | Groundwater

Groundwater Field Sheet

roject and Bore Installation	Detail					
ore / Standpipe ID:	Details					
	BH8					
111	TooheysNoven 71021.2	ber 2023 Mor	itori-			
Site Location:	71021.2	2020 10101	iitoring			
01	29 Nymag Stre 6.5 m AHD	et. Lidcombo				
Bore Easting:	6.5 m AHD	- Cidcombe				
Author Date:			N			
GW Level (during drilling):	7-Dec-06		Northing:			
Well Depth:		m bgl				
Screened Interval:	8.25	m bgl				
Contaminants/Comments:	2.0-8.25	m bgl				
Bore Development Details		- 3				
T						
	23/05/24					
ruigod by.	ML					
GW Level (pre-purge):	4.23	m bgl				
GW Level (post-purge):	5.07	m bal				
PSH observed:	Yes / (No) (i	nterface/visual	1 2 11 1			
Observed Well Depth:	8.25	m bgl	y. r mm thick			
Estimated Bore Volume:		L				
Total Volume Purged:		i —				
Equipment:	12 Volt pump	-				
Micropurge and Sampling De	tails					
Date/Time:	24/05/24					
Sampled By:	ML					
Weather Conditions:	Swing					
GW Level (pre-purge):	4. 2 5	m bgl				
GW Level (post sample):	4.33	m bgl				
PSH observed:	Yes / (Ng) (1	interface/visua	l), ? mm thick			
Observed Well Depth:	8.25	m bgl	- Thirt things			
Estimated Bore Volume:	15	L				
Total Volume Purged:	5	L				
Equipment:	peristaltic pur					
Time / Volume			y Parameters			
Stabilisation Criteria (3 readings)	Temp (°C)	DO (mg/L)	EC ((S)or mS/cm)	ρН	Turbidity	Redox (mV)
	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
0	21.1	0.80	18817	5.45		- 59. &
3,0	21.4	0.71	19253	5.55		- 79.8
60	21.4	0 .73	19326	5.53		- 37.9
90	21.4	0-81	19 356	5. 6z		- 99.1
120	21.4	0.79	19348	5.64		- 109. 3
150	21.4	0.80	19336	s. 6 5	-	-115.1
		-			-	
	-			-	-	-
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:	20 7 000	1	,		-	-
Jan Barrell		Sample	e Details 4			
			4			
Sampling Depth (rationals):	6.75	m bal				
Sampling Depth (rationale):	6.25	m bgl,				
Sample Appearance (e.g.			ow d shee	41		
Sample Appearance (e.g. colour, siltiness, odour):	Light gr		ow d shee	kn .		
Sample Appearance (e.g. colour, siltiness, odour): Sample ID:			ow d shee	41		
Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples:	Light gr	ey, no od				
Sample Appearance (e.g. colour, siltiness, odour): Sample ID:	Light gr	ey, no od	s vials (HCI), 1		tic (HNO3 (filte	red)
Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and filtration:	Light gr	ey, no od			tic (HNO3 (filte	red)
Sample Appearance (e.g. colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and	Light gr	ey, no od			tic (HNO3 (filte	red)

Douglas Partners Geotechnics | Environment | Groundwater

Groundwater Field Project and Bore Install Bore / Standols - 10	ation Details					
Bore / Standpipe ID:	BH9					
i oject Name:		ovember 2023	Monitoring			
Project Number:	71021.2	overniber 2023	Worldown			
Site Location:		Street, Lidcom	ha			
Bore RL	6.0 m AHD	Street, Lidcom	ibe			
Bore Easting:	O.O III AND		M- thing:			
Installation Date:	7 December	- 00010	Northing:			
GW Level (during day)	7 December					
C. C. Debiu.		m bgl				
Screened Interval:		5 m bgl				
Contaminants/Comments	1.5-6.	5 m bgl				
Dore Development Detail						
Date Lime:	1007					
Purged By:	23/05/20	-				
GW Level (pre-purge):	ML					
GW Level (post-purge):	4.02	m bgl				
PSH observed:	4.52	m bgl				
Observed:	Yes / (Ng)		ual). ? mm thick			
Observed Well Depth:	6.0	m bgl	,			
Estimated Bore Volume:		L				
Total Volume Purged:		ī				
Equipment:	12 Volt pum	<u> </u>				
Micropurge and Sampling	Details					
Date/Time:						
Sampled By:	74/05/2	4				
Weather Conditions:	ML					
GW Level (pre-purge):	Sunny					
GW Level (post sample):	4.02	m bgl				
PSH observed:	4.39	m bgl				
Observed Well Depth:	Yes / Nd		al). ? mm thick			
Estimated Bore Volume:	6.0	m bgl				
Total Volume Purged:	9	L				
Equipment:	3	L				
Equipment.	peristaltic pur	np and TPS m	ultimeter			
Time / Volume		Water Quali	ty Parameters			
· voidine	Temp (°C)	DO (mg/L)	EC (US)or mS/cm)	pН	Turbidity	Redox (mV
tabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
0	21.3	5,97	7250	5.93	İ	-44.9
50	21.6	5.14	71 21	5.97		-55.6
60	21.5	4.50	10261	5.01		-66.8
90	21.6	3. \$5		6.04		
lip	21. 7	3.69	10616			- 74.2
150	21.7	3.67	10 546	6.07		-79.0
1.40		3.0/	10 495	6.08		-80.5
		-				
distance Dendi						
ditional Readings Following	DO % Sat	SPC	TDS			
stabilisation:						
•		Sample	Details			
npling Depth (rationale):	5.0	m bgl,				
nple Appearance (e.g.						
our, siltiness, odour):	Light br	own. no	odom or	1	1 1	
ple ID:	1749		-40000 01	sheen o	bserved.	
QC Samples:						
pling Containers and	.001 -1 2	40 1 :	020000			
, ,	OUML diass. 2x	40mL glass	vials (HCI) . 1x	100ml plastic	CHNO2 (EIL	
tion:	3 , -	3	, , , , , , , , , , , , , , , , , , , ,	Pidatit	- (' '''YO'' (TIITA:	'AA'
tion:	00mL glass, 2x				er (inter	ed)
ation:			ed ou cou	1	djacent (

Douglas Partners Geotechnics | Environment | Groundwater Groundwater Field Short

Browndwater Field Sh	eet					
ribject and Bore Installation	Deteit-					
Otdingpine In-		-				
Project Name	BH10					
Project Number	TooheysNove	mber 2023 Mo	onitoring			
Site Location:	71021.2					
Bore RL	29 Nyrnag Str	reet, Lidcombe	9			
Bore Easting:	5.1 m AHD					
Installation Date:	7-Dec-06		Northing:			
GW Level (during drilling):	7-060-06					
Well Depth:	5	m bgl				
Screened Interval:	1.5-5.0	m bgl				
Contaminants/Comments:						
Bore Development Details -	Develop using	Bailer				
Date: Time:	23/05/14	, Duner				
Purged By:	ML	e				
GW Level (pre-purge):	1.14	m bgl				
GW Level (post-purge):	4.52	m bgl				
PSH observed:		interface/visus	al). ? mm thick			
Observed Well Depth:	5.2	m bgl			11.1	
Estimated Bore Volume:	4,	L		Torque a	+	
Total Volume Purged: Equipment:	,	L				
Microsum	12 Volt pump					
Micropurge and Sampling D Date/Time:						
Sampled By:	24/05/24					
Weather Conditions:	ML					
GW Level (pre-purge):	Swing					
GW Level (post sample):	3.87	m bgl				
PSH observed:	4.61	m bgl				
Observed Well Depth:	5.Z		al). ? mm thick			
Estimated Bore Volume:	4.9	m bgl L				
Total Volume Purged:	3L	L				
Equipment:	peristaltic pur		ultimeter			
	,,		y Parameters		~-	Redox (mV)
Time / Volume	Temp (°C)	DO (mg/L)	EC (u) or mS/cm)	pН	Turbidity	
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
0	19.7	6.14	5233	6.44		-79.9
30	19.9	6.19	4858	6.47		-84.1
60	19-8	4.07	4922	6.43		- 88. 8
90	(9.9	4.86	5.502	6.39		-924
12 0	10.0	4.65	5761	6.42	-	
150	10.0	4.85	-5163	6.44		-92.6
180	20.0	4.93	5184	6.43		-92.0
				-		
	DO % Sal	SPC	TDS			
Additional Readings Following	DO % Sai	SPC	103			
stabilisation:		Sample	Details			
II D. M. (antionals):	45 4.5					
ampling Depth (rationale):		1	0.01	L.A (1	/	94.
ample Appearance (e.g.	Etear,	to ou	24003 00 5	real Clean	er, uo odoni	sor shore
olour, siltiness, odour):	BH10					-1100/
ample ID: A/QC Samples:	/					
0 - 1-1 000					3337	
tration:	500mL glass, 2	2x 40mL glass	s vials (HCI) , 1x	100mL plasti	c (HNO3 (filter	ed)
omments / Observations:						

Table 6: Results of Laboratory Analysis in July 2014 (μg/L)

	Hardness	Heav	y Met	als¹						TRH				Fahrd	Total
Well	(mg CaCO₃ /L)	As	Cd	Cr ³	Cu	Pb	Hg	Ni	Zn	C ₆ -C ₉	C ₁₀ -C ₃₆	Benzene	Toluene	Ethyl- benzene	Total Xylene
1	130	<]	<0.1	<]	1	<]	<0.05	4	82	<10	<250	<1	<]	<7	<3
2BD1/ 180714		<]	<0.1	<1	<]	<]	<0.05	3	74	<10	<250	<7	<1	<1	<3
2	890	<]	0.2	<]	4	<]	<0.05	9	110	<10	<250	<]	<]	<]	<3
7	100	<1	<0.1	<]	3	<]	<0.05	6	28	<10	<250	<]	<]	<7	<3
8	1900	<]	0.2	<]	3	<]	<0.05	4	18	<10	<250	<1	<1	<7	<3
9	350	<7	<0.1	<]	1	<]	<0.05	2	18	<10	<250	<1	<]	<]	<3
10	380	<1	<0.1	<]	4	<]	<0.05	6	24	<10	<250	<1	<]	<1	<3
TS	-	-	-	-	-	-	-	-	-	-	-	101%	104%	102%	105%4
ТВ	-	-	-	-	-	-	-	-	-	-	-	<1	<]	<]	<3
	DGVI	13	2.4	33.1 ²	1.41	121.1 ²	0.6	120.2	87.4 ²	10	250	950	180	80	550

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

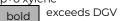


Table 7: Results of Laboratory Analysis in October 2015 (μg/L)

	Hardness	Hea	vy Met	tals¹						TRH					
Well	(mg CaCO ₃ /L)	As	Cd	Cr³	Cu	Pb	Hg	Ni	Zn	C ₆ -	C ₁₀ -	Benzene	Toluene	Ethyl- benzene	Total Xylene
1	670	2	<0.1	<1	4	<1	<0.05	7	55	<10	<250	<1	<1	<1	<3
2BD1/ 301015		2	<0.1	<]	<]	<1	<0.05	1	19	<10	<250	<]	<1	<]	<3
2	1000	<1	0.2	<1	2	<]	<0.05	10	50	<10	<250	<1	<1	<1	<3
7	180	3	<0.1	<1	<1	<1	<0.05	6	14	<10	<250	<1	<1	<1	<3
8	2300	<1	0.7	<]	4	<]	<0.05	4	17	<10	<250	<1	<1	<1	<3
9	420	<1	<0.1	<1	2	<]	<0.05	7	36	<10	<250	<1	<1	<1	<3
10	160	5	<0.1	<]	<1	<]	<0.05	9	8	<10	520	<1	<1	<1	<3
TS	-	-	-	-	-	-	-	-	-	-	-	81%	92%	98%	104%4
ТВ	-	-	-	-	-	-	-	-	-	<10	-	<1	<1	<1	<3
DGVI		13	2.42	33.1 ²	1.41	121.1 ²	0.6	120.2 ²	87.4 ²	10	250	950	180	80	550

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

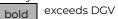


Table 8: Results of Laboratory Analysis in January 2016 (μg/L)

	Hardness	Heav	y Meta	ls¹						TRH					Paled	Total
Well	(mg CaCO ₃ /L)	As	Cd	Cr ³	Cu	Pb	Hg	Ni	Zn	C ₆ -C ₉	C ₁₀ -C ₃₆	>C ₁₀ -	Benzene	Toluene	Ethyl- benzene	Total Xylene
1	360	3	<0.1	<1	<1	<1	<0.05	<1	12	<10	<250	66	<]	<]	<1	<3
2BD1/ 180714		2	<0.1	<1	<1	<]	<0.05	<]	15	<10	<250	79	<]	<]	<]	<3
2	720	<]	0.2	<]	3	<1	<0.05	14	120	<10	<250	<50	<1	<]	<1	<3
7	110	3	<0.1	<1	<1	<7	<0.05	8	13	<10	<250	<50	<1	<1	<1	<3
8	1900	<1	0.3	<7	4	<7	<0.05	4	18	<10	<250	<50	<1	<1	<]	<3
9	480	<1	<0.1	<1	2	<7	<0.05	5	43	<10	<250	<50	<1	<1	<1	<3
10	170	4	<0.1	<7	<1	<7	<0.05	2	5	<10	<250	<50	<1	<1	<]	<3
TS	-	-	-	-	-	-	-	-	-	-	-	-	94%	95%	92%	93%4
ТВ	-	-	-	-	-	-	-	-	-	<10	-	-	<1	<1	<1	<3
DGVI	1	13	2.4 ²	33.1 ²	1.41	121.1 ²	0.6	120.2	87.4 ²	10	250	50	950	180	80	550

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

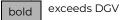


Table 9: Results of Laboratory Analysis in January / February 2017 (μg/L)

	Heav	y Metal	s ¹						TRH							Palend	Total
Well	As	Cd	Cr ³	Cu	Pb	Hg	Ni	Zn	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -	>C ₁₀ - C ₁₆	Benzene	Toluene	Ethyl- benzene	Total Xylene
1	1	<0.1	<1	1	<1	<0.05	4	28	<10	<50	<100	<100	<50	<]	<]	<7	<3
2	<7	0.2	<7	<1	<7	<0.05	5	20	<10	<50	<100	<100	<50	<]	<]	<7	<3
7	3	<0.1	<1	<1	<1	<0.05	6	1	<10	<50	<100	<100	<50	<]	<]	<1	<3
8	<7	0.5	<7	6	<1	<0.05	4	14	<10	<50	<100	<100	<50	<]	<1	<7	<3
9	<7	<0.1	<1	2	<1	<0.05	8	38	<10	<50	<100	<100	<50	<]	<]	<1	<3
BD1	<1	<0.1	<1	1	<1	<0.05	8	34	<10	<50	<100	<100	<50	<]	<]	<1	<3
10	3	<0.1	<1	7	<7	<0.05	50	150	<10	<50	220	<100	98	<]	<1	<1	<3
DGVI	13	2.4 ²	33.1 ²	1.41	121.1 ²	0.6	120.2	87.4 ²	10	250			50	950	180	80	550

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

Table 10: Results of Laboratory Analysis in March 2017 (μg/L)

	Heav	y Metal	s¹						TRH							Paled	Total
Well	As	Cd	Cr ³	Cu	Pb	Hg	Ni	Zn	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -	>C ₁₀ - C ₁₆	Benzene	Toluene	Ethyl- benzene	Total Xylene
1	2	<0.1	<7	1	<7	<0.05	10	90	<10	<50	<100	<100	<50	<7	<1	<7	<3
BD1	2	<0.1	<1	<1	<1	<0.05	11	92	<10	<50	<100	<100	<50	<]	<1	<1	<3
2	<1	<0.1	<1	3	<1	<0.05	5	38	<10	<50	<100	<100	<50	<1	<1	<1	<3
7	3	<0.1	<]	<]	<]	<0.05	8	2	<10	<50	<100	<100	<50	<1	<1	<1	<3
8	<7	<0.1	<7	4	<7	<0.05	4	16	<10	<50	<100	<100	<50	<]	<]	<1	<3
9	1	<0.1	<7	3	<7	<0.05	7	42	<10	<50	<100	<100	<50	<]	<]	<1	<3
10	2	<0.1	<]	2	<]	<0.05	4	33	<10	<50	<100	<100	<50	<1	<1	<1	<3
DGVI	13	2.4 ²	33.1 ²	1.41	121.1 ²	0.6	120.2	87.4 ²	10	250			50	950	180	80	550

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

Table 11: Results of Laboratory Analysis in August 2017 (μg/L)

	Heav	y Metal	s¹						TRH							Paled	Total
Well	As	Cd	Cr ³	Cu	Pb	Hg	Ni	Zn	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -	>C ₁₀ - C ₁₆	Benzene	Toluene	Ethyl- benzene	Total Xylene
1	1	<0.1	<1	<1	<1	<0.05	5	19	<10	<50	<100	<100	<50	<]	<7	<]	<3
2	<1	<0.1	<1	<1	<7	<0.05	4	12	<10	<50	<100	<100	<50	<1	<1	<]	<3
BD1	<1	<0.1	<1	<1	<1	<0.05	4	13	<10	<50	<100	<100	<50	<1	<1	<1	<3
7	9	<0.1	<1	<1	<1	<0.05	17	19	<10	<50	<100	<100	<50	<1	<1	<1	<3
8	<7	1	<7	27	<7	<0.05	4	20	<10	<50	<100	<100	<50	<1	<]	<1	<3
9	5	<0.1	<1	4	<1	<0.05	30	420	<10	<50	<100	<100	<50	<1	<1	<]	<3
10	5	<0.1	<7	2	<7	<0.05	16	44	<10	<50	<100	<100	<50	<1	<]	<1	<3
DGV1	13	2.42	33.1 ²	1.4 ¹	121.1 ²	0.6	120.2	87.4 ²	10	250			50	950	180	80	550

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

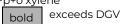


Table 12: Results of Laboratory Analysis in November 2017 (μg/L)

	Heav	y Metal	s¹						TRH							-1.	
Well	As	Cd	Cr ³	Cu	Pb	Hg	Ni	Zn	C ₆ -C ₉	C ₁₀ -	C ₁₅ -	C ₂₉ -	>C ₁₀ - C ₁₆	Benzene	Toluene	Ethyl- benzene	Total Xylene
1	<7	<0.1	<7	2	<]	<0.05	2	10	<10	<50	<100	<100	<50	<1	<7	<7	<3
2	<7	<0.1	<7	<1	<1	<0.05	3	6	<10	<50	<100	<100	<50	<1	<7	<1	<3
BD1/1 51120 17	<]	<0.1	<7	<]	<]	<0.05	3	5	<10	<50	<100	<100	<50	<1	<1	<]	<3
7	17	<0.1	<7	<7	<7	<0.05	24	69	<10	<50	<100	<100	<50	<]	<]	<1	<3
8	<1	0.4	<7	11	<1	<0.05	3	14	<10	<50	<100	<100	<50	<1	<]	<1	<3
9	1	<0.1	<7	<7	<7	<0.05	7	82	<10	<50	<100	<100	<50	<]	<]	<1	<3
10	3	<0.1	<7	<7	<7	<0.05	3	12	<10	<50	<100	<100	<50	<]	<]	<1	<3
DGVI	13	2.4 ²	33.1 ²	1.4 ¹	121.12	0.6	120.2	87.4 ²	10	250			50	950	180	80	550

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

Table 13: Results of Laboratory Analysis in August 2018 (μg/L)

	Heav	y Metal	s²						TRH								
Well	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	C ₆ -	C ₁₀ -	C ₁₅ -	C ₂₉ -C ₃₆	>C ₁₀ -	Benzene	Toluene	Ethyl- benzene	Total Xylene⁵
1	1	<0.1	<7	3	<7	<0.05	5	30	<10	<50	<100	<100	<50	<7	<7	<7	<3
2	<	<0.1	<7	3	<]	<0.05	3	12	<10	<50	<100	<100	<50	<1	<7	<1	<3
BD1/ 2018 0828 3	<7	<0.1	~]	<]	<]	<0.05	3	9	<10	<50	<100	<100	<50	<1	<]	<1	<3
7	11	0.8	<7	4	1	<0.05	77	670	<10	<50	<100	<100	<50	<]	<]	<]	<3
8	<1	1.7	<7	10	<]	<0.05	3	21	<10	<50	<100	<100	<50	<]	<]	<]	<3
9	2	<0.1	<7	5	<]	<0.05	7	110	<10	<50	<100	<100	<50	<]	<]	<]	<3
10	4	<0.1	<7	3	<]	<0.05	8	59	22	190	610	<100	230	8	<]	<1	<3
DGV1	13	2.4 ²	33.1 ²	1.4 ¹	121.1 ²	0.6	120.2 ²	87.4 ²	10	250			50	950	180	80	550 ⁵

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZC, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

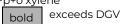


Table 14: Results of Laboratory Analysis in November 2018 (μg/L)

	Heav	y Metal	ls²						TRH							-1.	
Well	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	C ₆ -	C ₁₀ -	C ₁₅ -	C ₂₉ - C ₃₆	>C ₁₀ -	Benzene	Toluene	Ethyl- benzene	Total Xylene ⁵
1	<1	<0.1	<7	2	<]	<0.05	6	45	<10	<50	<100	<100	<50	<1	<]	<7	<3
2	<1	<0.1	<1	1	<1	<0.05	4	19	<10	<50	<100	<100	<50	<1	<]	<1	<3
BD1/2018 3	<]	<0.1	<]	<]	<1	<0.05	4	16	<10	<50	<100	<100	<50	<1	<1	<1	<3
7	15	<0.1	<1	1	<1	<0.05	9	10	<10	<50	<100	<100	<50	<1	<1	<1	<3
8	<1	0.7	<1	5	<1	<0.05	4	24	<10	<50	<100	<100	<50	<1	<]	<1	<3
9	3	<0.1	1	14	<1	<0.05	17	250	<10	<50	<100	<100	<50	<1	<]	<1	<3
10	4	<0.1	<1	6	<1	<0.05	6	30	<10	<50	<100	<100	<50	<1	<]	<1	<3
DGVI	13	2.4 ²	33.1 ²	1.41	121.1 ²	0.6	120.2 ²	87.4 ²	10	250			50	950	180	80	550⁵

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZC, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

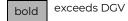


Table 15: Results of Laboratory Analysis in August / September 2019 (μg/L)

	Heav	y Metal	ls²						TRH								
Well	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	C ₆ -	C ₁₀ -	C ₁₅ -	C ₂₉ -	>C ₁₀ -	Benzene	Toluene	Ethyl- benzene	Total Xylene⁵
1	<]	<0.1	<1	2	<]	<0.05	3	69	<10	<50	<100	<100	<50	<1	<]	<1	<3
2	<1	0.2	<1	2	<1	<0.05	4	16	<10	<50	<100	<100	<50	<1	<]	<1	<3
BD1/ 20190902 3	<]	0.2	<]	2	<1	<0.05	4	19	<10	<50	<100	<100	<50	<]	<1	<]	<3
7	42	<0.1	<1	1	<1	<0.05	22	14	<10	<50	<100	<100	<50	<]	<1	<]	<3
8	<1	0.8	<1	8	<1	<0.05	4	16	<10	<50	<100	<100	<50	<1	<]	<1	<3
9	3	<0.1	<1	2	<1	<0.05	3	39	<10	<50	<100	<100	<50	<]	<1	<]	<3
10	3	<0.1	<1	2	<1	<0.05	22	34	<10	<50	<100	<100	<50	<1	<]	<1	<3
DGVI	13	2.4 ²	33.1 ²	1.4 ¹	121.1 ²	0.6	120.2 ²	87.4 ²	10	250			50	950	180	80	550 ⁵

- 1 DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+<u>p+o xyl</u>ene

Table 16: Results of Laboratory Analysis in November 2019 (μg/L)

Well	Heav	y Metal	S ²						TRH					Benzene	Tolue ne	Ethyl- benzene	Total Xylene ⁵
weii	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	C ₆ -	C ₁₀ - C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	>C ₁₀ - C ₁₆				
1	<7	<0.1	<1	<7	<1	<0.05	6	40	<10	<50	<100	<100	<50	<]	<1	<]	<3
BD1/ 201911253	<7	<0.1	<]	1	<]	<0.05	6	40	<10	<50	<100	<100	<50	<]	<]	<]	<3
2	<7	<0.1	<7	1	<]	<0.05	5	25	<10	<50	<100	<100	<50	<7	<7	<7	<3
7	8	<0.1	<1	1	<1	<0.05	22	39	<10	<50	<100	<100	<50	<1	<1	<1	<3
8	<7	0.3	<1	1	<1	<0.05	4	21	<10	<50	<100	<100	<50	<1	<1	<1	<3
9	3	<0.1	<7	2	<1	<0.05	3	42	<10	<50	<100	<100	<50	<1	<]	<1	<3
10	3	<0.1	<1	<1	<1	<0.05	5	24	<10	<50	<100	<100	<50	<1	<]	<1	<3
DGV1	13	2.4 ²	33.1 ²	1.41	121.12	0.6	120.2 ²	87.4 ²	10	250			50	950	180	80	550 ⁵

Notes:

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

Table 17: Results of Laboratory Analysis in May 2020 (μg/L)

Well	Heav	y Metal	ls²						TRH					Benzene	Toluene	Ethyl- benzene	Total Xylene⁵
weii	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	C ₆ -	C ₁₀ - C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -	>C ₁₀ - C ₁₆				
1	<1	<0.1	<1	7	<1	<0.05	3	<1	<10	<50	<100	<100	<50	<1	<]	<]	<3
BD1/ 20200513	2	<0.1	<1	<]	<]	<0.05	2	<]	<10	<50	<100	<100	<50	<]	<1	<1	<3
2	<1	<0.1	<1	17	<]	<0.05	5	3	<10	<50	<100	<100	<50	<]	<]	<]	<3
7	3	<0.1	<]	19	<1	<0.05	13	16	<10	<50	<100	<100	<50	<]	<]	<]	<3
8	<7	1.9	<]	26	<1	<0.05	11	68	<10	<50	<100	<100	<50	<]	<]	<]	<3
9	5	<0.1	<]	20	<]	<0.05	9	49	<10	<50	<100	<100	<50	<]	<7	<]	<3
10	2	<0.1	<]	9	<1	<0.05	6	14	<10	<50	110	<100	<50	<]	<]	<]	<3
DGVI	13	2.4 ²	33.1 ²	1.41	121.1 ²	0.6	120.2 ²	87.4 ²	10	250 50				950	180	80	550 ⁵

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

bold

Table 18: Results of Laboratory Analysis in November 2020 (μg/L)

Well	Heav	y Meta	ls²						TRH					Benzene	Toluene	Ethyl- benzene	Total Xylene ⁵
	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	C ₆ -	C ₁₀ -	C ₁₅ -C ₂₈	C ₂₉ -	>C ₁₀ - C ₁₆				
1	2	<0.1	<1	<1	<1	<0.05	3	11	<10	<50	<100	<100	<50	<]	<]	<1	<3
2	<7	<0.1	<1	<]	<]	<0.05	4	17	<10	<50	<100	<100	<50	<]	<1	<1	<3
BD1 20201126	2	<0.1	<]	<]	<1	<0.05	3	15	<10	<50	<100	<100	<50	<]	<1	<]	<3
7	1	<0.1	<]	5	<]	<0.05	8	11	<10	<50	<100	<100	<50	<]	<1	<1	<3
8	<7	1.2	<]	21	<]	<0.05	5	31	<10	<50	<100	<100	<50	<]	<1	<1	<3
9	2	<0.1	<]	<]	<]	<0.05	3	12	<10	<50	<100	<100	<50	<]	<1	<1	<3
10	2	<0.1	<1	16	<]	<0.05	10	74	<10	<50	<100	<100	<50	<]	<]	<1	<3
DGV1	13	2.4 ²	33.1 ²	1.4 ¹	121.1 ²	0.6	120.2 ²	87.4	10	250			50	950	180	80	550⁵

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZC, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

Table 19: Results of Laboratory Analysis in May 2021 (μg/L)

Well	Heav	y Metal	ls²						TRH					Benzene	Toluene	Ethyl- benzene	Total Xylene ⁵
	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	C ₆ -	C ₁₀ - C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -	>C ₁₀ - C ₁₆				
1	1	<0.1	<1	1	<1	<0.05	4	10	<10	<50	<100	<100	<50	<]	<]	<1	<3
BD1 20210528	1	<0.1	<]	<]	<1	<0.05	3	3	<10	<50	<100	<100	<50	<]	<]	<]	<3
2	<7	<0.1	<1	13	<1	<0.05	9	43	<10	<50	<100	<100	<50	<]	<1	<1	<3
7	<7	0.3	<1	12	<1	<0.05	35	220	<10	<50	<100	<100	<50	<]	<]	<1	<3
8	<7	2.6	<1	<7	<1	<0.05	7	82	<10	<50	<100	<100	<50	<]	<]	<1	<3
9	3	<0.1	<]	15	<]	<0.05	6	33	<10	<50	<100	<100	<50	<]	<1	<1	<3
10	4	<0.1	<1	<7	<1	<0.05	12	32	<10	<50	<100	<100	<50	<]	<]	<1	<3
DGV1	13	2.4 ²	33.1 ²	1.41	121.1 ²	0.6	120.2 ²	87.4	10	250 50				950	180	80	550⁵

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

Table 20: Results of Laboratory Analysis in November 2021 (μg/L)

Well	Heav	y Metal	ls²						TRH					Benzene	Toluene	Ethyl- benzene	Total Xylene ⁵
	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	C ₆ -	C ₁₀ -	C ₁₅ -C ₂₈	C ₂₉ -	>C ₁₀ - C ₁₆				
1	<1	<0.1	<1	<]	<]	<0.05	5	33	<10	<50	<100	<100	<50	<]	<1	<1	<3
2	<1	<0.1	<1	<1	<1	<0.05	5	22	<10	<50	<100	<100	<50	<]	<1	<1	<3
7	4	0.1	<]	<1	<]	<0.05	17	10	<10	<50	<100	<100	<50	<]	<1	<1	<3
8	<1	1.4	<1	2	<1	<0.05	9	89	<10	<50	<100	<100	<50	<1	<1	<1	<3
BD1	<1	1.5	<]	2	<1	<0.05	10	97	<10	<50	<100	<100	<50	<]	<]	<1	<3
9	1	<0.1	<]	2	<1	<0.05	8	67	<10	<50	<100	<100	<50	<]	<]	<1	<3
10	5	<0.1	<1	<1	<1	<0.05	15	38	<10	<50	<100	<100	<50	<1	<]	<1	<3
DGV1	13	2.42	33.1 ²	1.41	121.1 ²	0.6	120.2 ²	87.4	10	250 50				950	180	80	625⁵

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZC, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

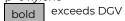


Table 21: Results of Laboratory Analysis in May 2022 (μg/L)

NA/-III	Heav	y Meta	ls²								TRH			Benzene	Toluene	Ethyl- benzene	Total Xylene ⁵
Well	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	C ₆ -	C ₁₀ -	C ₁₅ -C ₂₈	C ₂₉ -	>C ₁₀ - C ₁₆				
1	<1	<0.1	<1	19	<1	<0.05	2	20	<10	<50	<100	<100	<50	<1	<]	<1	<3
2	<7	<0.1	<]	2	<]	<0.05	7	84	<10	<50	<100	<100	<50	<1	<1	<1	<3
7	<7	<0.1	<]	35	<]	<0.05	19	72	<10	<50	<100	<100	<50	<1	<1	<1	<3
8	<7	1.0	<]	<1	<]	<0.05	5	18	<10	<50	<100	<100	<50	<1	<1	<1	<3
BD1	<7	1.1	<]	2	<]	<0.05	4	19	<10	<50	<100	<100	<50	<1	<1	<1	<3
9	3	<0.1	<]	4	<]	<0.05	14	89	<10	<50	<100	<100	<50	<1	<1	<1	<3
10	2	<0.1	<]	2	<]	<0.05	13	43	<10	<50	<100	130	<50	<1	<1	<1	<3
DGVI	13	2.4 ²	33.1 ²	1.41	121.1 ²	0.6	120.2 ²	87.4	10	250			50	950	180	80	625 ⁵

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZC, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

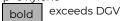


Table 22: Results of Laboratory Analysis in December 2022 (μg/L)

NA/all	Heav	y Meta	ls²						TRH					Benzene	Toluene	Ethyl- benzene	Total Xylene ⁵
Well	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	C ₆ -	C ₁₀ -	C ₁₅ -C ₂₈	C ₂₉ -	>C ₁₀ - C ₁₆				
1	2	<0.1	<]	<1	<1	<0.05	4	39	<10	<50	<100	<100	<50	<1	<]	<1	<3
BD1	2	<0.1	<]	<]	<1	<0.05	3	34	<10	<50	<100	<100	<50				
2	<7	0.1	<1	4	<1	<0.05	4	340	<10	<50	<100	<100	<50	<1	<1	<]	<3
7	2	<0.1	<]	4	<1	<0.05	12	37	<10	<50	<100	<100	<50	<1	<]	<1	<3
8	1	2.5	<]	3	<1	<0.05	9	56	<10	<50	<100	<100	<50	<1	<1	<1	<3
9	1	<0.1	<1	1	<1	<0.05	4	33	<10	<50	<100	<100	<50	<1	<1	<]	<3
10	7	<0.1	<]	<1	<1	<0.05	3	11	<10	78	570	610	100	<1	<]	<1	<3
10 – silica clean up	-	-	-	-	-	-	-	-	-	<50	160	300	59	-	-	-	-
DGVI	13	2.4 ²	33.1 ²	1.4 ¹	121.12	0.6	120.2 ²	87.4	10	250			50	950	180	80	6255

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

bold exceeds DGV

Table 23: Results of Laboratory Analysis in May 2023 (μg/L)

	1				alysis iii N		1,5. ,												1	ı
Well	Hea	vy Met	als²								TRH						Benzene	Toluene	Ethyl- benzene	Total Xylene ⁵
Well	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	C ₆ -	C10-C14	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	>C10-C16	C6-C10	C6-C10- BTEX (fl)	F2				
1	<1	<0.1	<7	<7	<1	<0.05	4	9	<10	<50	<100	<100	<50	<10	<10	<50	<1	<7	<]	<3
2	<1	<0.1	<1	<1	<1	<0.05	3	5	<10	<50	<100	<100	<50	<10	<10	<50	<1	<7	<]	<3
7	4	<0.1	<1	4	<1	<0.05	10	38	<10	<50	<100	<100	<50	<10	<10	<50	<7	<7	<1	<3
8	<]	0.1	<1	3	<1	<0.05	5	16	<10	<50	<100	<100	<50	<10	<10	<50	<1	<1	<1	<3
BD1/20230530	<]	0.1	<1	<]	<1	<0.05	5	12	<10	<50	<100	<100	<50	<10	<10	<50	<1	<1	<1	<3
9	<]	<0.1	<1	2	<1	<0.05	3	22	<10	<50	<100	<100	<50	<10	<10	<50	<1	<1	<1	<3
10	3	<0.1	<7	<1	<1	<0.05	2	2	<10	<50	<100	<100	<50	<10	<10	<50	<1	<7	<7	<3
DGV1	13	2.42	33.1 ²	1.41	121.1 ²	0.6	120.2 ²	87.4 ²	10	250	-		50	-	-	-	950	180	80	625⁵

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) willd be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

exceeds DGV

Table 24: Results of Laboratory Analysis in November 2023 (μg/L)

Well	Hea	vy Me	tals²										TRH						Benzene	Toluene	Ethyl- benzene	Total Xylene ⁵
Wei.	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	င _် င	C10-C14	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	91 ጋ- 01 ጋ<	>C16-C34	052-523	012-92	C6-C10- BTEX (f1)	F2				
1	<1	0.1	<]	6	<1	<0.05	10	960	<10	<50	390	<100	390	420	<100	<10	<10	<50	<]	<]	<1	<3
2	<1	<0.1	<]	<7	<1	<0.05	2	30	<10	<50	<100	<100	<50	<100	<100	<10	<10	<50	<]	<]	<1	<3
7	1	<0.1	<]	4	<7	<0.05	6	25	<10	<50	<100	<100	<50	<100	<100	<10	<10	<50	<1	<7	<1	<3
8	<1	0.3	<]	2	<7	<0.05	3	18	<10	<50	<100	<100	<50	<100	<100	<10	<10	<50	<1	<]	<7	<3
BD1/20231124	<1	0.4	<1	6	<7	<0.05	3	20	<10	<50	<100	<100	<50	<100	<100	<10	<10	<50	<1	<]	<7	<3
9	1	<0.1	<]	6	<1	<0.05	6	62	<10	<50	<100	<100	<50	<100	<100	<10	<10		<1	<]	<1	<3
10	<1	<0.1	1	2	<1	<0.05	<1	10	<10	60	210	<100	71	240	<100	<10	<10	71	<]	<]	<1	<3
Spike	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	_	106%	103%	112%	107-115%
Blank	-	1	-	-	-	-	-	-	<10	<10	-	-	-			-	-	-	<]	<7	<1	<3
Rinsate	-	ı	-	-	-	-	-	-	<10	<10	<100	<100	<50	<100	<100	<10	<10	<50	<7	<7	<1	<3
DGV1	13	2.42	33.1 ²	1.41	121.1 ²	0.6	120.2 ²	87.4 ²	10	250			50	100	100	10	10	50	950	180	80	625⁵

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- 3 Field replicate of sample listed immediately above
- 4 All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

bold exceeds DGV

Table 25: Results of Laboratory Analysis in May 2024 (μg/L)

Well	Hea	avy Me	tals²										TRH						Benzene	Toluene	Ethyl- benzene	Total Xylene ⁵
Weii	As	Cd	Cr ⁴	Cu	Pb	Hg	Ni	Zn	C ₆ -	C10-C14	C ₁₅ -C ₂₈	C29-C36	⁹¹ Ͻ- ⁰¹ Ͻ<	>C16-C34	072-752<	012-92	C6-C10- BTEX (f1)	F2				
1	<7	<0.1	<]	<7	<]	<0.05	3	33	<10	<50	<100	<100	<50	<100	<100	<10	<10	<50	<1	<]	<]	<3
BD1/20240524 ³	<1	<0.1	<7	3	<7	<0.05	3	31	<10	<50	<100	<100	<50	<100	<100	<10	<10	<50	<]	<]	<]	<3
2	<7	0.2	<7	1	<7	<0.05	6	63	<10	<50	<100	<100	<50	<100	<100	<10	<10	<50	<]	<]	<]	<3
7	1	<0.1	<7	<1	<7	<0.05	14	50	<10	<50	<100	<100	<50	<100	<100	<10	<10	<50	<]	<]	<]	<3
8	2	0.4	<7	<1	<]	<0.05	10	27	<10	<50	<100	<100	<50	<100	<100	<10	<10	<50	<1	<]	<]	<3
9	<7	<0.1	<]	<]	<]	<0.05	2	28	<10	<50	<100	<100	<50	<100	<100	<10	<10	<50	<]	<]	<]	<3
10	3	<0.1	<]	1	<]	<0.05	7	36	<10	<50	<100	<100	<50	<100	<100	<10	<10	<50	<1	<]	<]	<3
Spike	-	-	1	-	-	1	-	-	1	-	ı	i	i			-	1	i	98%	95%	98%	87-90%
Blank	-	-	-	-	-	-	-	-	<10	<10	-	-	ı			-	-	ı	<1	<]	<]	<3
Rinsate	<1	<0.1	<]	<7	<]	<0.05	<]	<]	<10	<10	<100	<100	<50	<100	<100	<10	<10	<50	<]	<]	<]	<3
DGV1	13	2.4 ²	33.1 ²	1.41	121.1 ²	0.6	120.2 ²	87.4 ²	10		250		50	100	100	10	10	50	950	180	80	625⁵

- DGV from the default guideline values provided in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)
- 2 Heavy metal thresholds are adjusted for a hardness of 500 mg/L per ANZECC 2000
- Field replicate of sample listed immediately above
- All chromium are assumed to exist in the stable Cr (III) oxidation state, as Cr (VI) will be too reactive and unstable under the normal environment.
- 5 m+p+o xylene

bold exceeds DGV

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 352346

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	71021.20, Lidcombe
Number of Samples	10 Water
Date samples received	27/05/2024
Date completed instructions received	27/05/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	03/06/2024	
Date of Issue	03/06/2024	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISC	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water						
Our Reference		352346-1	352346-2	352346-3	352346-4	352346-5
Your Reference	UNITS	BH1	BH2	BH7	ВН8	BH9
Date Sampled		24/05/2024	24/05/2024	24/05/2024	24/05/2024	24/05/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	29/05/2024	29/05/2024	29/05/2024	29/05/2024	29/05/2024
Date analysed	-	30/05/2024	30/05/2024	30/05/2024	30/05/2024	30/05/2024
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	110	112	109	112	112
Surrogate Toluene-d8	%	97	97	94	95	95
Surrogate 4-Bromofluorobenzene	%	103	101	100	100	102

vTRH(C6-C10)/BTEXN in Water						
Our Reference		352346-6	352346-7	352346-8	352346-9	352346-10
Your Reference	UNITS	BH10	BD1/20240524	Trip Spike	Trip Blank	Rinsate
Date Sampled		24/05/2024	24/05/2024	24/05/2024	24/05/2024	24/05/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	29/05/2024	29/05/2024	29/05/2024	29/05/2024	29/05/2024
Date analysed	-	30/05/2024	30/05/2024	30/05/2024	30/05/2024	30/05/2024
TRH C ₆ - C ₉	μg/L	<10	<10		<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10		<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10		<10	<10
Benzene	μg/L	<1	<1	98%	<1	<1
Toluene	μg/L	<1	<1	95%	<1	<1
Ethylbenzene	μg/L	<1	<1	98%	<1	<1
m+p-xylene	μg/L	<2	<2	90%	<2	<2
o-xylene	μg/L	<1	<1	87%	<1	<1
Naphthalene	μg/L	<1	<1		<1	<1
Surrogate Dibromofluoromethane	%	107	111	109	106	108
Surrogate Toluene-d8	%	95	94	104	94	94
Surrogate 4-Bromofluorobenzene	%	100	101	91	102	101

svTRH (C10-C40) in Water						
Our Reference		352346-1	352346-2	352346-3	352346-4	352346-5
Your Reference	UNITS	BH1	BH2	BH7	BH8	BH9
Date Sampled		24/05/2024	24/05/2024	24/05/2024	24/05/2024	24/05/2024
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	28/05/2024	28/05/2024	28/05/2024	28/05/2024	28/05/2024
Date analysed	-	29/05/2024	29/05/2024	29/05/2024	29/05/2024	29/05/2024
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	95	73	85	92	86

svTRH (C10-C40) in Water				
Our Reference		352346-6	352346-7	352346-10
Your Reference	UNITS	BH10	BD1/20240524	Rinsate
Date Sampled		24/05/2024	24/05/2024	24/05/2024
Type of sample		Water	Water	Water
Date extracted	-	28/05/2024	28/05/2024	28/05/2024
Date analysed	-	29/05/2024	29/05/2024	29/05/2024
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50
Surrogate o-Terphenyl	%	82	79	86

HM in water - dissolved						
Our Reference		352346-1	352346-2	352346-3	352346-4	352346-5
Your Reference	UNITS	BH1	BH2	ВН7	BH8	ВН9
Date Sampled		24/05/2024	24/05/2024	24/05/2024	24/05/2024	24/05/2024
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/05/2024	28/05/2024	28/05/2024	28/05/2024	28/05/2024
Date analysed	-	28/05/2024	28/05/2024	28/05/2024	28/05/2024	28/05/2024
Arsenic-Dissolved	μg/L	<1	<1	1	2	<1
Cadmium-Dissolved	μg/L	<0.1	0.2	<0.1	0.4	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	3	6	14	10	2
Zinc-Dissolved	μg/L	33	63	50	27	28

HM in water - dissolved				
Our Reference		352346-6	352346-7	352346-10
Your Reference	UNITS	BH10	BD1/20240524	Rinsate
Date Sampled		24/05/2024	24/05/2024	24/05/2024
Type of sample		Water	Water	Water
Date prepared	-	28/05/2024	28/05/2024	28/05/2024
Date analysed	-	28/05/2024	28/05/2024	28/05/2024
Arsenic-Dissolved	μg/L	3	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1
Copper-Dissolved	μg/L	1	3	<1
Lead-Dissolved	μg/L	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	7	3	<1
Zinc-Dissolved	μg/L	36	31	<1

Cations in water Dissolved						
Our Reference		352346-1	352346-2	352346-3	352346-4	352346-5
Your Reference	UNITS	BH1	BH2	BH7	ВН8	BH9
Date Sampled		24/05/2024	24/05/2024	24/05/2024	24/05/2024	24/05/2024
Type of sample		Water	Water	Water	Water	Water
Date digested	-	28/05/2024	28/05/2024	28/05/2024	28/05/2024	28/05/2024
Date analysed	-	29/05/2024	29/05/2024	29/05/2024	29/05/2024	29/05/2024
Calcium - Dissolved	mg/L	41	54	20	95	31
Magnesium - Dissolved	mg/L	19	140	23	380	170
Hardness (calc) equivalent CaCO ₃	mg/L	180	730	150	1,800	790

Cations in water Dissolved		
Our Reference		352346-6
Your Reference	UNITS	BH10
Date Sampled		24/05/2024
Type of sample		Water
Date digested	-	28/05/2024
Date analysed	-	29/05/2024
Calcium - Dissolved	mg/L	11
Magnesium - Dissolved	mg/L	89
Hardness (calc) equivalent CaCO ₃	mg/L	390

Method ID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTR	ROL: vTRH(0	C6-C10)/E	BTEXN in Water		Duplicate Spike Recovery							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]		
Date extracted	-			29/05/2024	1	29/05/2024	31/05/2024		29/05/2024			
Date analysed	-			30/05/2024	1	30/05/2024	03/06/2024		30/05/2024			
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	<10	<10	0	99			
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	<10	<10	0	99			
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	98			
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	100			
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1 0		98			
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2 0		100			
o-xylene	μg/L	1	Org-023	<1	1	<1	<1 0		96			
Naphthalene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]			
Surrogate Dibromofluoromethane	%		Org-023	108	1	110	96	14	97			
Surrogate Toluene-d8	%		Org-023	97	97 1 97 99 2		104					
Surrogate 4-Bromofluorobenzene	%		Org-023	101	1	103	99	4	96	[NT]		

QUALITY CON	ITROL: svTF	RH (C10-0		Du	plicate		Spike Recovery %			
Test Description	cription Units PQL Method Blank #		Base	Dup.	RPD	LCS-W2	[NT]			
Date extracted	-			28/05/2024	1	28/05/2024	28/05/2024		28/05/2024	
Date analysed	-			29/05/2024	1	29/05/2024	29/05/2024		29/05/2024	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	<50	<50	0	112	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	<100	<100	0	113	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	1	<100	<100	0	100	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	112	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	1	<100	<100	0	113	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	Org-020 <100 1 <100 <100		0	100			
Surrogate o-Terphenyl	%		Org-020	100	1	95	93	2	101	

QUALITY CO	NTROL: HN	l in water	Du	plicate		Spike Recovery %				
Test Description	on Units PQL Method Blank # Base Dup.		Dup.	RPD	LCS-W3	352346-3				
Date prepared	-			28/05/2024	2	28/05/2024	28/05/2024		28/05/2024	28/05/2024
Date analysed	-			28/05/2024	2	28/05/2024	28/05/2024		28/05/2024	28/05/2024
Arsenic-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	101	[NT]
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	2	0.2	0.2	0	91	[NT]
Chromium-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	89	[NT]
Copper-Dissolved	μg/L	1	Metals-022	<1	2	1	1	0	82	[NT]
Lead-Dissolved	μg/L	1	Metals-022	<1	2	<1	<1	0	97	[NT]
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	2	<0.05	<0.05	0	116	77
Nickel-Dissolved	μg/L 1 Metals-022 <1 2 6 6		6	0	87	[NT]				
Zinc-Dissolved	μg/L	1	Metals-022	<1	2	63	59	7	89	[NT]

QUALITY CON	ITROL: Cation	ons in wa		Du		Spike Recovery %				
Test Description	Units PQL Method Blank # Base		Dup.	RPD	LCS-W1	[NT]				
Date digested	-			28/05/2024	2	28/05/2024	28/05/2024		28/05/2024	
Date analysed	-	-		29/05/2024	2	29/05/2024	29/05/2024		29/05/2024	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	2	54	54	0	99	
Magnesium - Dissolved	mg/L	0.5 Metals-020		<0.5	2	140	140	0	97	
Hardness (calc) equivalent CaCO ₃	mg/L	3	Metals-020	[NT]	2	730	730	0	[NT]	

Result Definiti	ons									
NT	Not tested									
NA	Test not required									
INS	sufficient sample for this test									
PQL	Practical Quantitation Limit									
<	Less than									
>	Greater than									
RPD	Relative Percent Difference									
LCS	Laboratory Control Sample									
NS	Not specified									
NEPM	National Environmental Protection Measure									
NR	Not Reported									

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CHAIN OF CUSTODY DESPATCH SHEET

Proje			Suburk): 	Lidcom	be						To:	Envirola	ıb Servic	es			
		Kurt Plan				Number:				Samp	er:	ML	_		12 Ashley St, Chatswood NSW 2067			
Email	:			/Michael.										Attn:	Sample Receipt			
	round time:			72 hour				Same da	-						(02) 991			samplereceipt@envirolab.com.au
Prior	Storage: 🗌 Fr	idge 🔲 I	Freezer	✓ Esky		Do samı	oles co	ntain '	potent	al' HBI	VI? ✓	No	☐ Yes	(If YE	S, then ha	indle, trar	isport a	nd store in accordance with FPM HAZID)
	San	nple ID		bed	Sample Type	Container Type						Analyte	s					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	Heavy Metals	TRH	втех	Hardness								Notes/ Preservation/ Additional Requirements
1	BH1			24/05/24	w	G+P	х	х	Х	Х								
2	BH2			24/05/24	w	G+P	х	Х	Х	х								
3	BH7			24/05/24	w	G+P	х	х	Х	х								
4	BH8			24/05/24	w	G+P	х	Х	Х	х								
5	BH9			24/05/24	w	G+P	х	Х	Х	х								
٤	BH10			24/05/24	w	G+P	х	х	х	х						_		
7	BD1/20240524			24/05/24	w	G+P	х	X	х									
8	Trip Spike			24/05/24	w	G			Х									Envirolab Services 12 Ashley St ENVIROLAB Chatewood ASSW 2057
9	Trip Blank			24/05/24	w	G	-		х									Ph: (02) 9910 6200
ιb	Rinsate			24/05/24	W	G	х	X	х									Job No: 352346
								•										Date Received: 27/S/24 Time Received: 1415
																		Received By: (W Temp.(Cos)/Ambient
																		Cooling Ice Icepack 2 Cooling Ice Icepack Security: Intacur Bruken None
Metal	s to analyse:			l. <u>.</u>		L				<u> </u>		<u> </u>			I AR 5	RECEIP)T	
		in cont	ainer			Transpo	rted to	Jahora	ton, h	۸.	Courie		-		_		<u> </u>	
	umber of samples in container: end results to: Douglas Partners Pty Ltd					Transpo	i teu to	IGNUIC	LOIY D	y ·	Count				Lab Ref. No: Received by:			
Addre					NSW 211	Phone:	(02) 986	09 0666		-					Date & Time:			
	ddress: 96 Hermitage Road, West Rydelinquished by: Michael Le						27/05/2		<u></u> _	Signe	d:	Michae	el Le		Signed			
	elinquished by: Michael Le Date: 27/05/2024 Signed: Michael Le Signed:																	

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck

Sample Login Details	
Your reference	71021.20, Lidcombe
Envirolab Reference	352346
Date Sample Received	27/05/2024
Date Instructions Received	27/05/2024
Date Results Expected to be Reported	03/06/2024

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	10 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	2
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst				
Phone: 02 9910 6200	Phone: 02 9910 6200				
Fax: 02 9910 6201	Fax: 02 9910 6201				
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au				

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201

ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

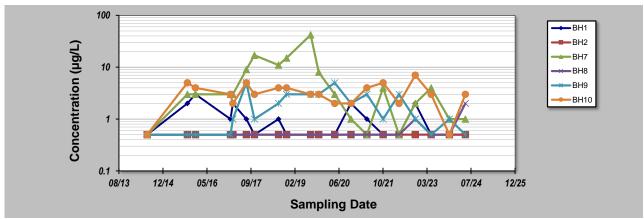
Sample ID	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	HM in water - dissolved	Cations in water Dissolved
BH1	✓	✓	✓	✓
BH2	✓	✓	✓	✓
BH7	✓	✓	✓	✓
ВН8	✓	✓	✓	✓
ВН9	✓	✓	✓	✓
BH10	✓	✓	✓	✓
BD1/20240524	✓	✓	✓	
Trip Spike	✓			
Trip Blank	✓			
Rinsate	1	1	✓	

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.


Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

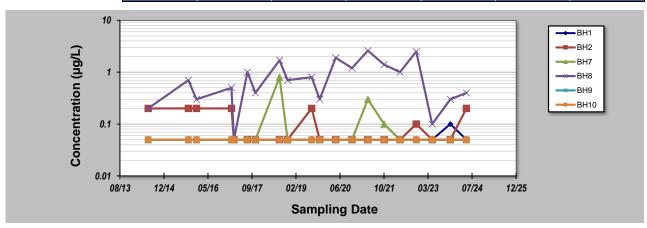
TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

for Constituent Trend Analysis

valuation Date: 21-Dec-23 Facility Name: Tooheys Conducted By: KDP					Job ID: 71021 Constituent: Arsenic Concentration Units: µg/L			
Sam	pling Point ID:	BH1	BH2	BH7	BH8	BH9	BH10	
Sampling Event	Sampling Date			ARSEN	IC CONCENTRATIO	N (μg/L)		
1	1-Jul-14	0.5	0.5	0.5	0.5	0.5	0.5	
2	1-Oct-15	2	0.5	3	0.5	0.5	5	
3	1-Jan-16	3	0.5	3	0.5	0.5	4	
4	1-Feb-17	1	0.5	3	0.5	0.5	3	
5	1-Mar-17	2	0.5	3	0.5	1	2	
6	1-Aug-17	1	0.5	9	0.5	5	5	
7	1-Nov-17	0.5	0.5	17	0.5	1	3	
8	1-Aug-18	1	0.5	11	0.5	2	4	
9	1-Nov-18	0.5	0.5	15	0.5	3	4	
10	1-Aug-19	0.5	0.5	42	0.5	3	3	
11	1-Nov-19	0.5	0.5	8	0.5	3	3	
12	1-May-20	0.5	0.5	3	0.5	5	2	
13	1-Nov-20	2	0.5	1	0.5	2	2	
14	1-May-21	1	0.5	0.5	0.5	3	4	
15	1-Nov-21	0.5	0.5	4	0.5	1	5	
16	1-May-22	0.5	0.5	0.5	0.5	3	2	
17	1-Nov-22	2	0.5	2	1	1	7	
18	1-May-23	0.5	0.5	4	0.5	0.5	3	
19	24-Nov-23	0.5	0.5	1	0.5	1	0.5	
20	24-May-24	0.5	0.5	1	2	0.5	3	

23								
24								
25								
Coefficient	of Variation:	0.73	0.00	1.47	0.58	0.79	0.49	
Mann-Kendall	Statistic (S):	-51	0	-29	33	19	-15	
Confid	lence Factor:	94.8%	48.7%	81.6%	84.9%	71.8%	67.3%	
Concent	ration Trend:	Prob. Decreasing	Stable	No Trend	No Trend	No Trend	Stable	

Notes


21

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water. 41(3):355-367, 2003.

Result less than laboratory PQL. Half the PQL adopted as concentration

for Constituent Trend Analysis

Facility Name					Job ID: 71021 Constituent: Cadmium				
Conducted By	KDP			C	Concentration Units:	μg/L			
Sampling Point ID:		BH1	BH2	BH7	BH8	ВН9	BH10		
Sampling Event	Sampling Date			CADMIU	M CONCENTRATIO	N (μg/L)			
1	1-Jul-14	0.05	0.2	0.05	0.2	0.05	0.05		
2	1-Oct-15	0.05	0.2	0.05	0.7	0.05	0.05	,	
3	1-Jan-16	0.05	0.2	0.05	0.3	0.05	0.05	,	
4	1-Feb-17	0.05	0.2	0.05	0.5	0.05	0.05		
5	1-Mar-17	0.05	0.05	0.05	0.05	0.05	0.05		
6	1-Aug-17	0.05	0.05	0.05	1	0.05	0.05		
7	1-Nov-17	0.05	0.05	0.05	0.4	0.05	0.05		
8	1-Aug-18	0.05	0.05	0.8	1.7	0.05	0.05		
9	1-Nov-18	0.05	0.05	0.05	0.7	0.05	0.05		
10	1-Aug-19	0.05	0.2	0.05	0.8	0.05	0.05		
11	1-Nov-19	0.05	0.05	0.05	0.3	0.05	0.05		
12	1-May-20	0.05	0.05	0.05	1.9	0.05	0.05		
13	1-Nov-20	0.05	0.05	0.05	1.2	0.05	0.05		
14	1-May-21	0.05	0.05	0.3	2.6	0.05	0.05		
15	1-Nov-21	0.05	0.05	0.1	1.4	0.05	0.05		
16	1-May-22	0.05	0.05	0.05	1	0.05	0.05		
17	1-Nov-22	0.05	0.1	0.05	2.5	0.05	0.05		
18	1-May-23	0.05	0.05	0.05	0.1	0.05	0.05		
19	24-Nov-23	0.1	0.05	0.05	0.3	0.05	0.05		
20	24-May-24	0.05	0.2	0.05	0.4	0.05	0.05		
21									
22							İ		
23									
24							İ		
25									
Coefficier	nt of Variation:	0.21	0.72	1.69	0.85	0.00	0.00		
	II Statistic (S):	17	-37	8	40	0	0		
	idence Factor:	69.6%	87.7%	58.9%	89.6%	48.7%	48.7%		

No Trend

No Trend

Stable

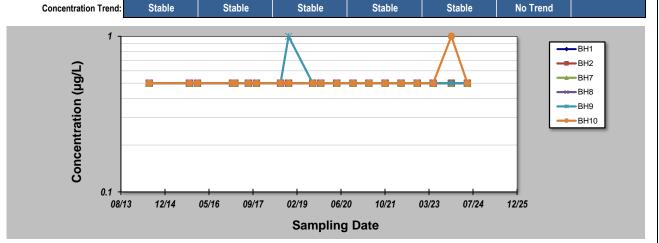
Stable

Notes

Concentration Trend:

No Trend

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.


Stable

- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water. 41(3):355-367, 2003.

Result less than laboratory PQL. Half the PQL adopted as concentration

for Constituent Trend Analysis

valuation Date: 21-Dec-23				Job ID: 71021				
Facility Name	Tooheys			Constituent: Chromium				
Conducted By: KDP			(Concentration Units:	μg/L			
Sam	Sampling Point ID: BH1 BH2		BH7	BH8	ВН9	BH10		
Sampling Event	Sampling Date			CHROMI	JM CONCENTRATI	ON (μg/L)		
1	1-Jul-14	0.5	0.5	0.5	0.5	0.5	0.5	
2	1-Oct-15	0.5	0.5	0.5	0.5	0.5	0.5	
3	1-Jan-16	0.5	0.5	0.5	0.5	0.5	0.5	
4	1-Feb-17	0.5	0.5	0.5	0.5	0.5	0.5	
5	1-Mar-17	0.5	0.5	0.5	0.5	0.5	0.5	
6	1-Aug-17	0.5	0.5	0.5	0.5	0.5	0.5	
7	1-Nov-17	0.5	0.5	0.5	0.5	0.5	0.5	
8	1-Aug-18	0.5	0.5	0.5	0.5	0.5	0.5	
9	1-Nov-18	0.5	0.5	0.5	0.5	1	0.5	
10	1-Aug-19	0.5	0.5	0.5	0.5	0.5	0.5	
11	1-Nov-19	0.5	0.5	0.5	0.5	0.5	0.5	
12	1-May-20	0.5	0.5	0.5	0.5	0.5	0.5	
13	1-Nov-20	0.5	0.5	0.5	0.5	0.5	0.5	
14	1-May-21	0.5	0.5	0.5	0.5	0.5	0.5	
15	1-Nov-21	0.5	0.5	0.5	0.5	0.5	0.5	
16	1-May-22	0.5	0.5	0.5	0.5	0.5	0.5	
17	1-Nov-22	0.5	0.5	0.5	0.5	0.5	0.5	
18	1-May-23	0.5	0.5	0.5	0.5	0.5	0.5	
19	24-Nov-23	0.5	0.5	0.5	0.5	0.5	1	
20	24-May-24	0.5	0.5	0.5	0.5	0.5	0.5	
21								
22								
23								
24								
25								
Coefficie	nt of Variation:	0.00	0.00	0.00	0.00	0.21	0.21	

48.7%

48.7%

52.6%

69.6%

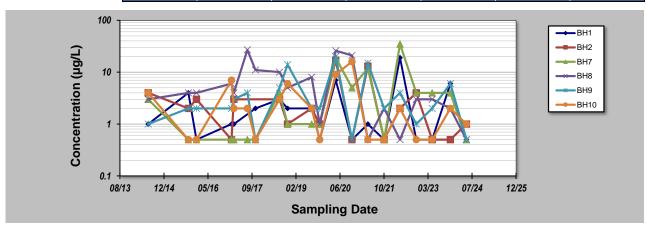
Notes

Mann-Kendall Statistic (S):

Confidence Factor

48.7%

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.


48.7%

- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water. 41(3):355-367, 2003.

Result less than laboratory PQL. Half the PQL adopted as concentration

for Constituent Trend Analysis

Facility Name				,	Job ID: 71021 Constituent: Chromium				
•	Conducted By: KDP Sampling Point ID: BH1 BH2			BH7	Concentration Units: μg/L				
		ВПІ	ВП2	<u> </u>			BH10		
Sampling Event	Sampling Date	CHROMIUM CONCENTRATION (μg/L)							
1	1-Jul-14	1	4	3	3	1	4		
2	1-Oct-15	4	2	0.5	4	2	0.5		
3	1-Jan-16	0.5	3	0.5	4	2	0.5		
4	1-Feb-17	1	0.5	0.5	6	2	7		
5	1-Mar-17	1	3	0.5	4	3	2		
6	1-Aug-17	<1	<1	0.5	27	4	2		
7	1-Nov-17	2	<1	0.5	11	0.5	0.5		
8	1-Aug-18	3	3	4	10	5	3		
9	1-Nov-18	2	1	1	5	14	6		
10	1-Aug-19	2	2	1	8	2	2		
11	1-Nov-19	0.5	1	1	1	2	0.5		
12	1-May-20	7	17	19	26	20	9		
13	1-Nov-20	0.5	0.5	5	21	0.5	16		
14	1-May-21	1	13	12	0.5	15	0.5		
15	1-Nov-21	0.5	0.5	0.5	2	2	0.5		
16	1-May-22	19	2	35	0.5	4	2		
17	1-Nov-22	0.5	4	4	3	1	0.5		
18	1-May-23	0.5	0.5	4	3	2	0.5		
19	24-Nov-23	6	0.5	4	2	6	2		
20	24-May-24	0.5	1	0.5	0.5	0.5	1		
21									
22									
23									
24									
25									
Coefficier	nt of Variation:	1.58	1.38	1.75	1.16	1.23	1.30		

97.5%

Increasing

63.8%

No Trend

Decreasing

70.7%

No Trend

Notes

Mann-Kendall Statistic (S)

Confidence Factor

Concentration Trend:

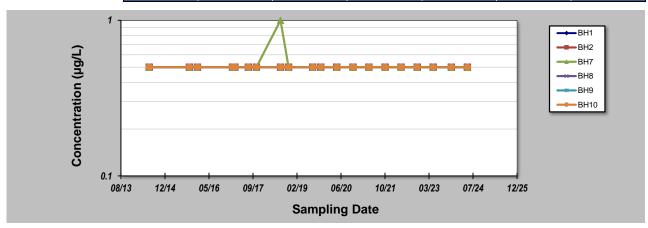
71.0%

No Trend

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

90.0%

Prob. Decreasing


- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water. 41(3):355-367, 2003.

Result less than laboratory PQL. Half the PQL adopted as concentration

for Constituent Trend Analysis

Evaluation Date: 21-Dec-23	Job ID: 71021			
Facility Name: Tooheys	Constituent: Lead			
Conducted By: KDP	Concentration Units: µg/L			
Sampling Point ID: BH1 BH2	BH7 BH8	ВН9	BH10	

Samp	oling Point ID:	BH1	BH2	BH7	BH8	BH9	BH10	
Sampling Event	Sampling Date			LEAD	CONCENTRATION	(μg/L)		
1	1-Jul-14	0.5	0.5	0.5	0.5	0.5	0.5	
2	1-Oct-15	0.5	0.5	0.5	0.5	0.5	0.5	
3	1-Jan-16	0.5	0.5	0.5	0.5	0.5	0.5	
4	1-Feb-17	0.5	0.5	0.5	0.5	0.5	0.5	
5	1-Mar-17	0.5	0.5	0.5	0.5	0.5	0.5	
6	1-Aug-17	0.5	0.5	0.5	0.5	0.5	0.5	
7	1-Nov-17	0.5	0.5	0.5	0.5	0.5	0.5	
8	1-Aug-18	0.5	0.5	1	0.5	0.5	0.5	
9	1-Nov-18	0.5	0.5	0.5	0.5	0.5	0.5	
10	1-Aug-19	0.5	0.5	0.5	0.5	0.5	0.5	
11	1-Nov-19	0.5	0.5	0.5	0.5	0.5	0.5	
12	1-May-20	0.5	0.5	0.5	0.5	0.5	0.5	
13	1-Nov-20	0.5	0.5	0.5	0.5	0.5	0.5	
14	1-May-21	0.5	0.5	0.5	0.5	0.5	0.5	
15	1-Nov-21	0.5	0.5	0.5	0.5	0.5	0.5	
16	1-May-22	0.5	0.5	0.5	0.5	0.5	0.5	
17	1-Nov-22	0.5	0.5	0.5	0.5	0.5	0.5	
18	1-May-23	0.5	0.5	0.5	0.5	0.5	0.5	
19	24-Nov-23	0.5	0.5	0.5	0.5	0.5	0.5	
20	24-May-24	0.5	0.5	0.5	0.5	0.5	0.5	
21								
22								
23								
24								
25					0.00			
Coefficien	t of Variation:	0.00	0.00	0.21	0.00	0.00		
Mann-Kenda	II Statistic (S):	0	0	-5	0	0	0	
Confi	dence Factor:	48.7%	48.7%	55.1%	48.7%	48.7%	48.7%	

Stable

Stable

Stable

Stable

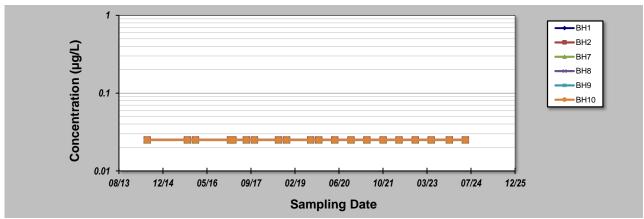
Notes

Concentration Trend:

Stable

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Stable


- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water. 41(3):355-367, 2003.

Result less than laboratory PQL. Half the PQL adopted as concentration

for Constituent Trend Analysis

Evaluation Date:					Job ID:			
Facility Name:	Tooheys				Constituent:	Mercury		
Conducted By:	KDP			Concentration Units: µg/L				
Caman	line Daint ID.	BH1	BH2	DU7	DUO	BHO	DUAG	
Samp	ling Point ID:	ВПІ	DHZ	BH7	BH8	BH9	BH10	
Sampling	Sampling			MERCUE	Y CONCENTRATION	ON (ug/L)		
Event	Date					5.1 (№3/=)		
1	1-Jul-14	0.025	0.025	0.025	0.025	0.025	0.025	
2	1-Oct-15	0.025	0.025	0.025	0.025	0.025	0.025	
3	1-Jan-16	0.025	0.025	0.025	0.025	0.025	0.025	
4	1-Feb-17	0.025	0.025	0.025	0.025	0.025	0.025	
5	1-Mar-17	0.025	0.025	0.025	0.025	0.025	0.025	
6	1-Aug-17	0.025	0.025	0.025	0.025	0.025	0.025	
7	1-Nov-17	0.025	0.025	0.025	0.025	0.025	0.025	
8	1-Aug-18	0.025	0.025	0.025	0.025	0.025	0.025	
9	1-Nov-18	0.025	0.025	0.025	0.025	0.025	0.025	
10	1-Aug-19	0.025	0.025	0.025	0.025	0.025	0.025	
11	1-Nov-19	0.025	0.025	0.025	0.025	0.025	0.025	
12	1-May-20	0.025	0.025	0.025	0.025	0.025	0.025	
13	1-Nov-20	0.025	0.025	0.025	0.025	0.025	0.025	
14	1-May-21	0.025	0.025	0.025	0.025	0.025	0.025	
15	1-Nov-21	0.025	0.025	0.025	0.025	0.025	0.025	
16	1-May-22	0.025	0.025	0.025	0.025	0.025	0.025	
17	1-Nov-22	0.025	0.025	0.025	0.025	0.025	0.025	
18	1-May-23	0.025	0.025	0.025	0.025	0.025	0.025	
19	24-Nov-23	0.025	0.025	0.025	0.025	0.025	0.025	
20	24-May-24	0.025	0.025	0.025	0.025	0.025	0.025	

24								
25								
Coefficient of	of Variation:	0.00	0.00	0.00	0.00	0.00	0.00	
Mann-Kendall S	Statistic (S):	0	0	0	0	0	0	
Confide	ence Factor:	48.7%	48.7%	48.7%	48.7%	48.7%	48.7%	
Concentra	ation Trend:	Stable	Stable	Stable	Stable	Stable	Stable	

Notes

21 22 23

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water. 41(3):355-367, 2003.

Result less than laboratory PQL. Half the PQL adopted as concentration

for	Const	ituent T	rend /	Analys	sis
-----	-------	----------	--------	--------	-----

Evaluation Date:	21-Dec-23			Ī	Job ID:	71021			
Facility Name:					Constituent:				
Conducted By:	KDP			Concentration Units: µg/L					
Samp	oling Point ID:	BH1	BH2	BH7	BH8	ВН9	BH10		
Sampling Event	Event Date			NICKEL CONCENTRATION (μg/L)					
1	1-Jul-14	4	9	6	4	2	6		
2	1-Oct-15	7	10	6	4	7	9		
3	1-Jan-16	0.5	14	8	4	5	2		
4	1-Feb-17	4	5	6	4	8	50		
5	1-Mar-17	10	5	8	4	7	4		
6	1-Aug-17	5	4	17	4	30	16		
7	1-Nov-17	2	3	24	3	7	3		
8	1-Aug-18	5	3	77	3	7	8		
9	1-Nov-18	6	4	9	4	17	6		
10	1-Aug-19	3	4	22	4	3	22		
11	1-Nov-19	6	5	22	4	3	5		
12	1-May-20	3	5	13	11	9	6		

35

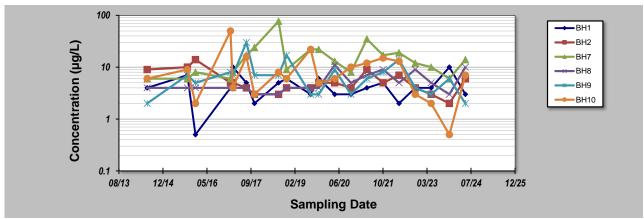
17

19

10

9

5


14

12

15

13

20	24-May-24	3	6	14	10	2	7	
21								
22								
23								
24								
25								
Coefficient	t of Variation:	0.53	0.53	0.95	0.47	0.86	1.09	
Mann-Kendal	I Statistic (S):	-10	-42	33	67	-25	-17	
Confid	dence Factor:	61.3%	90.7%	84.9%	98.5%	78.0%	69.6%	
Concent	tration Trend:	Stable	Prob. Decreasing	No Trend	Increasing	Stable	No Trend	

Notes

1-Nov-20

1-May-21

1-Nov-21

1-May-22

1-May-23

24-Nov-23

14

15

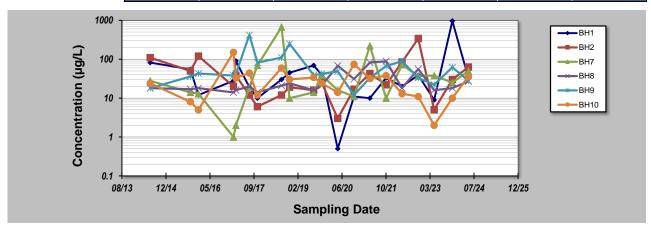
16

17 18

19

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

9


- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Result less than laboratory PQL. Half the PQL adopted as concentration

for Constituent Trend Analysis

Evaluation Date:	21-Dec-23			Job ID: 71021				
Facility Name:	Tooheys			Constituent: Nickel				
Conducted By:	Conducted By: KDP			Concentration Units: μg/L				
Samp	Sampling Point ID: BH1 BH2			BH7	BH8	ВН9	BH10	
Sampling Sampling Event Date				NICKEL	. CONCENTRATIO	N (μg/L)		
1	1 1-Jul-14 82 110			28	18	18	24	

Sampling Event	Sampling Date			NICKEL	. CONCENTRATIO	N (μg/L)		
1	1-Jul-14	82	110	28	18	18	24	
2	1-Oct-15	55	50	14	17	36	8	
3	1-Jan-16	12	120	13	18	43	5	
4	1-Feb-17	28	20	1	14	38	150	
5	1-Mar-17	90	38	2	16	42	33	
6	1-Aug-17	19	12	19	20	420	44	
7	1-Nov-17	10	6	69	14	82	12	
8	1-Aug-18	30	12	670	21	110	59	
9	1-Nov-18	45	19	10	24	250	30	
10	1-Aug-19	69	16	14	16	39	34	
11	1-Nov-19	40	25	39	21	42	24	
12	1-May-20	0.5	3	16	68	49	14	
13	1-Nov-20	11	17	11	31	12	74	
14	1-May-21	10	43	220	82	33	32	
15	1-Nov-21	33	22	10	89	67	38	
16	1-May-22	20	84	72	18	89	13	
17	1-Nov-22	39	340	37	56	33	11	
18	1-May-23	9	5	38	16	22	2	
19	24-Nov-23	960	30	25	18	62	10	
20	24-May-24	33	63	50	27	28	36	
21		_						
22								
23								
24								
25								
				1.02				
	II Statistic (S):	-22	1	44	63	-12	-21	
Confi	dence Factor:	75.0%	50.0%	91.8%	97.9%	63.8%	74.0%	

Prob. Increasing

Increasing

No Trend

No Trend

Notes

Concentration Trend:

No Trend

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

No Trend

- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Result less than laboratory PQL. Half the PQL adopted as concentration

for Constituent Trend Analysis

Evaluation Date: 21-Dec-23			Job ID: 71021				
Facility Name: Tooheys			Constituent: C6-C9				
Conducted By: KDP	y: KDP			oncentration Units:	μg/L		
Sampling Point ID: BH1 BH2			BH7	BH8	ВН9	BH10	

Sam	pling Point ID:	BH1	BH2	BH7	BH8	BH9	BH10			
Sampling Event	Sampling Date			C6-C9	CONCENTRATION	l (μg/L)				
1	1-Jul-14	5	5	5	5	5	5			
2	1-Oct-15	5	5	5	5	5	5			
3	1-Jan-16	5	5	5	5	5	5			
4	1-Feb-17	5	5	5	5	5	5			
5	1-Mar-17	5	5	5	5	5	5			
6	1-Aug-17	5	5	5	5	5	5			
7	1-Nov-17	5	5	5	5	5	5			
8	1-Aug-18	5	5	5	5	5	22			
9	1-Nov-18	5	5	5	5	5	5			
10	1-Aug-19	5	5	5	5	5	5			
11	1-Nov-19	5	5	5	5	5	5			
12	1-May-20	5	5	5	5	5	5			
13	1-Nov-20	5	5	5	5	5	5			
14	1-May-21	5	5	5	5	5	5			
15	1-Nov-21	5	5	5	5	5	5			
16	1-May-22	5	5	5	5	5	5			
17	1-Nov-22	5	5	5	5	5	5			
18	1-May-23	5	5	5	5	5	5			
19	24-Nov-23	5	5	5	5	5	5			
20	24-May-24	5	5	5	5	5	5			
21										
22										
23										
24										
25										
Coefficier	nt of Variation:	0.00	0.00	0.00	0.00	0.00	0.65			
Mann-Kenda	II Statistic (S):	0	0	0	0	0	-5			
Conf	idence Factor:	48.7%								

Stable

Stable

Stable

Stable

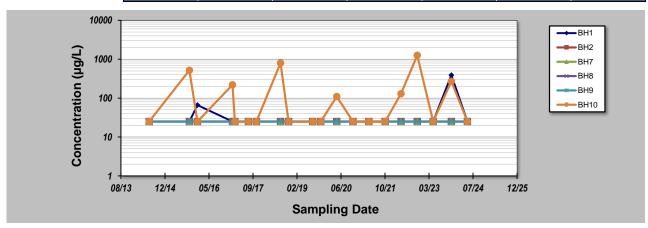
Notes

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Stable

- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water. 41(3):355-367, 2003.

Result less than laboratory PQL. Half the PQL adopted as concentration


Stable

Concentration Trend:

for Constituent Trend Analysis

Evaluation Date: 21-Dec-23				Job ID:	71021			
Facility Name: Tooheys	Facility Name: Tooheys			Constituent: C10-C36				
Conducted By: KDP			Concentration Units: µg/L					
Sampling Point ID:	BH7	BH8	BH9	BH10				

Samp	pling Point ID:	BH1	BH2	BH7	BH8	BH9	BH10	
Sampling Event	Sampling Date			C10-C3	6 CONCENTRATIO	N (μg/L)		
1	1-Jul-14	25	25	25	25	25	25	
2	1-Oct-15	25	25	25	25	25	520	
3	1-Jan-16	66	25	25	25	25	25	
4	1-Feb-17	25	25	25	25	25	220	
5	1-Mar-17	25	25	25	25	25	25	
6	1-Aug-17	25	25	25	25	25	25	
7	1-Nov-17	25	25	25	25	25	25	
8	1-Aug-18	25	25	25	25	25	800	
9	1-Nov-18	25	25	25	25	25	25	
10	1-Aug-19	25	25	25	25	25	25	
11	1-Nov-19	25	25	25	25	25	25	
12	1-May-20	25	25	25	25	25	110	
13	1-Nov-20	25	25	25	25	25	25	
14	1-May-21	25	25	25	25	25	25	
15	1-Nov-21	25	25	25	25	25	25	
16	1-May-22	25	25	25	25	25	130	
17	1-Nov-22	25	25	25	25	25	1258	
18	1-May-23	25	25	25	25	25	25	
19	24-Nov-23	390	25	25	25	25	270	
20	24-May-24	25	25	25	25	25	25	
21								
22								
23								
24								
25								
	t of Variation:	1.80	0.00	0.00	0.00	0.00	1.78	
	II Statistic (S):	3	0	0	0	0	10	
Confi	dence Factor:	52.6%	48.7%	48.7%	48.7%	48.7%	61.3%	
Concen	tration Trend:							

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</p>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Result less than laboratory PQL. Half the PQL adopted as concentration